33 research outputs found
The role of GTP in transient splitting of 70S ribosomes by RRF (ribosome recycling factor) and EF-G (elongation factor G).
Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 microM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes
The ribosome-recycling step: consensus or controversy?
Ribosome recycling, the last step in translation, is now accepted as an essential process for prokaryotes. In 2005, three laboratories showed that ribosome-recycling factor (RRF) and elongation factor G (EF-G) cause dissociation of ribosomes into subunits, solving the long-standing problem of how this essential step of translation occurs. However, there remains ongoing controversy regarding the other actions of RRF and EF-G during ribosome recycling. We propose that the available data are consistent with the notion that RRF and EF-G not only split ribosomes into subunits but also participate directly in the release of deacylated tRNA and mRNA for the next round of translation
Structural insights into initial and intermediate steps of the ribosome-recycling process
The ribosome recycling factor (RRF) and elongation factor G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-EM structures of the PoTC•RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven toward the tRNA-exit (E) site, with a large rotational movement of domain II of RRF toward the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adapt unusual conformations. Furthermore, binding of EF-G to the PoTC•RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC, and (ii) the modes of action of EF-G during tRNA translocation and ribosome recycling steps are markedly different
Initiation Factor 3 (IF3) does not have any Role in the Release of Messenger RNA and Transfer RNA from the Post-Termination Complex during the Ribosome Recycling Reaction Catalyzed by EF-G/GTP and RRF (Ribosome Recycling Factor)
Spermine Specifically Inhibits the RRF (ribosome recycling factor) Reaction: In its presence, RRF still Stimulates Protein Synthesis
309 Development and Evaluation of Dynamic Production Management System Using Multi-Objective Hybrid Genetic Algorithms for Cellular Manufacturing
Research and Development of Heat Transfer Tube Materials for a Multi-stage Flash Desalination Plant
Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin.
かぶれの発症における血管周囲の免疫細胞の集積の重要性の解明. 京都大学プレスリリース. 2014-09-24.It remains largely unclear how antigen-presenting cells (APCs) encounter effector or memory T cells efficiently in the periphery. Here we used a mouse contact hypersensitivity (CHS) model to show that upon epicutaneous antigen challenge, dendritic cells (DCs) formed clusters with effector T cells in dermal perivascular areas to promote in situ proliferation and activation of skin T cells in a manner dependent on antigen and the integrin LFA-1. We found that DCs accumulated in perivascular areas and that DC clustering was abrogated by depletion of macrophages. Treatment with interleukin 1α (IL-1α) induced production of the chemokine CXCL2 by dermal macrophages, and DC clustering was suppressed by blockade of either the receptor for IL-1 (IL-1R) or the receptor for CXCL2 (CXCR2). Our findings suggest that the dermal leukocyte cluster is an essential structure for elicitating acquired cutaneous immunity
