965 research outputs found

    Abundance of small individuals influences the effectiveness of processing techniques for deep-sea nematodes

    Get PDF
    Nematodes are the most abundant metazoans of deep-sea benthic communities, but knowledge of their distribution is limited relative to larger organisms. Whilst some aspects of nematode processing techniques, such as extraction, have been extensively studied, other key elements have attracted little attention. We compared the effect of (1) mesh size (63, 45, and 32 μm) on estimates of nematode abundance, biomass, and body size, and (2) microscope magnification (50 and 100×) on estimates of nematode abundance at bathyal sites (250-3100 m water depth) on the Challenger Plateau and Chatham Rise, south-west Pacific Ocean. Variation in the effectiveness of these techniques was assessed in relation to nematode body size and environmental parameters (water depth, sediment organic matter content, %silt/clay, and chloroplastic pigments). The 63-μm mesh retained a relatively low proportion of total nematode abundance (mean ±SD = 55 ±9%), but most of nematode biomass (90 ± 4%). The proportion of nematode abundance retained on the 45-μm mesh in surface (0-1 cm) and subsurface (1-5 cm) sediment was significantly correlated (P < 0.01) with %silt/clay (R² = 0.39) and chloroplastic pigments (R² = 0.29), respectively. Variation in median nematode body weight showed similar trends, but relationships between mean nematode body weight and environmental parameters were either relatively weak (subsurface sediment) or not significant (surface sediment). Using a low magnification led to significantly lower (on average by 43%) nematode abundance estimates relative to high magnification (P < 0.001), and the magnitude of this difference was significantly correlated (P < 0.05) with total nematode abundance (R²p = 0.53) and the number of small (≤ 250 μm length) individuals (R²p = 0.05). Our results suggest that organic matter input and sediment characteristics influence the abundance of small nematodes in bathyal communities. The abundance of small individuals can, in turn, influence abundance estimates obtained using different mesh sizes and microscope magnifications

    Long-term slip rates and fault interactions under low contractional strain, Wanganui Basin, New Zealand

    No full text
    The newly mapped Kapiti-Manawatu Fault System (KMFS) in southern North Island, New Zealand, accommodated ∼3.5 km of basement throw over the last 3 Myr. Along-strike throw profiles are generated using seven stratigraphic markers, interpreted from seismic reflection profiles acquired <3 km apart. The profiles are symmetrical about their point of maximum displacement, and cumulative profiles suggest that the reverse fault system behaves coherently. The KMFS originates from the reactivation of extensional structures, with fault lengths remaining constant over time. Contractional deformation started at circa 1750 ± 400 ka. Maximum dip-slip rates along individual faults are 1.77 ± 0.53 and 0.74 ± 0.22 mm yr−1 for the 0–120 and 120–1350 ka periods, respectively. The maximum cumulative throw rates across the KMFS are 4.9 ± 1.5 and 1.5 ± 0.5 mm yr−1 for the same periods. Long-term strain rates across the KMFS are 2–5 times smaller than strain rates in the forearc basin of the Hikurangi subduction margin located less than 100 km to the east. The faults of the KMFS may extend to depth and link with the subducted Pacific plate

    Coccolithophore biodiversity controls carbonate export in the Southern Ocean

    Get PDF
    Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.info:eu-repo/semantics/publishedVersio

    Mangarara Formation: exhumed remnants of a middle Miocene, temperate carbonate, submarine channel-fan system on the eastern margin of Taranaki Basin, New Zealand

    Get PDF
    The middle Miocene Mangarara Formation is a thin (1–60 m), laterally discontinuous unit of moderately to highly calcareous (40–90%) facies of sandy to pure limestone, bioclastic sandstone, and conglomerate that crops out in a few valleys in North Taranaki across the transition from King Country Basin into offshore Taranaki Basin. The unit occurs within hemipelagic (slope) mudstone of Manganui Formation, is stratigraphically associated with redeposited sandstone of Moki Formation, and is overlain by redeposited volcaniclastic sandstone of Mohakatino Formation. The calcareous facies of the Mangarara Formation are interpreted to be mainly mass-emplaced deposits having channelised and sheet-like geometries, sedimentary structures supportive of redeposition, mixed environment fossil associations, and stratigraphic enclosure within bathyal mudrocks and flysch. The carbonate component of the deposits consists mainly of bivalves, larger benthic foraminifers (especially Amphistegina), coralline red algae including rhodoliths (Lithothamnion and Mesophyllum), and bryozoans, a warm-temperate, shallow marine skeletal association. While sediment derivation was partly from an eastern contemporary shelf, the bulk of the skeletal carbonate is inferred to have been sourced from shoal carbonate factories around and upon isolated basement highs (Patea-Tongaporutu High) to the south. The Mangarara sediments were redeposited within slope gullies and broad open submarine channels and lobes in the vicinity of the channel-lobe transition zone of a submarine fan system. Different phases of sediment transport and deposition (lateral-accretion and aggradation stages) are identified in the channel infilling. Dual fan systems likely co-existed, one dominating and predominantly siliciclastic in nature (Moki Formation), and the other infrequent and involving the temperate calcareous deposits of Mangarara Formation. The Mangarara Formation is an outcrop analogue for middle Miocene-age carbonate slope-fan deposits elsewhere in subsurface Taranaki Basin, New Zealand

    The effects of multiple trap spacing, baffles and brine volume on sediment trap collection efficiency

    Get PDF
    The hydrodynamic effects on trapping efficiency of sediment trap cross-frame position, baffles and brine volume were evaluated in three short-term (\u3c1 week) experiments in a temperate shallow marine environment (Evans Bay, Wellington Harbour, New Zealand). The effects of trap position and brine were further investigated during two open ocean, free-floating sediment trap deployments (1-2 days) near the Subtropical Front (STF), east of New Zealand. In the Evans Bay experiments (numbered I-III), cross-frames, each holding 12 cylindrical traps (inside diameter 9 cm, height 95 cm), were moored 3 meters above the seafloor in 15-18 m water depths at three randomly selected inner harbor sites. Triplicate subsamples from each cylinder were analyzed for total dry weight and mass fluxes calculated. The STF deployments utilized JGOFS MULTI-traps (inside diameter 7 cm, height 58 cm) attached to cross-frames moored at three depths (120, 300 and 550 m) on drifting arrays (Experiments IV and V). MULTI-trap samples were analyzed for total particulate mass, carbon and nitrogen. Results from Experiments I and V indicate that a spacing of about 3-trap diameters was sufficient to minimize inter-trap interactions and maintain trapping efficiency among traps suspended on a cross-frame at the same depth. Furthermore, baffles had no effect on trapping efficiency and an undetectable impact on zooplankton swimmer populations also collected in traps (Experiment II). In Experiment III, traps that were filled completely with high-density salt brine (50‰ excess NaCl) collected 2-3 times less material than traps with a basal brine height equivalent to 1- and 2.5-trap diameters. In contrast, high levels of inter-site variability confounded the STF MULTI-trap deployments during Experiment IV. However, variability in flux measurements from both Experiments III and IV increased 2 to 3-fold in brine-filled traps. Thus, the potential for brine-filled traps to undercollect material with higher levels of variability could possibly explain previously reported inaccuracies in the sediment trap method

    Images of Swazi women living with HIV

    Get PDF
    Abstract Swaziland has one of the highest HIV prevalence rates in the world and a society marked by gender inequality. HIV positive women are therefore a marginalized and stigmatised group. This research explores the therapeutic potential of art for a group of nine Swazi women living with HIV. It is a qualitative exploratory study of a group’s experience and the artwork produced by them. The images made within the art group were examined in order to discover what they communicate about the women’s lives and what effect the image-making process has on the participants. An eclectic approach was adopted with concepts from art therapy theory, especially psychoanalytic, analytic, feminist and group art therapy, informing both the methodology and the analysis of the artwork created. The art work reveals how the dominant ideologies concerning motherhood, HIV and poverty inform the women’s identities. The image-making process was found to be therapeutic in that it provided a useful way for these women to explore their identity, trauma and assess their future goals. The social value of the group was clearly evident. The art group was presented as a practical strategy which can be used to give marginalized woman a voice. In my own practical work I explore the physical manifestation of AIDS deaths in the natural environment through the genre of landscape painting. My paintings are a witness to my empirical experience of the pandemic. A brief discussion of the concepts of the “uncanny”, “The Sublime” and palimpsest in paintings by Paul Nash, Caspar David Fredrich, Paul Cezanne, William Kentridge and Anselm Kiefer are used to establish a conceptual framework to understand my work

    Physical mixing effects on iron biogeochemical cycling: FeCycle experiment

    Get PDF
    The effects of physical processes on the distribution, speciation, and sources/sinks for Fe in a high-nutrient low-chlorophyll (HNLC) region were assessed during FeCycle, a mesoscale SF6 tracer release during February 2003 (austral summer) to the SE of New Zealand. Physical mixing processes were prevalent during FeCycle with rapid patch growth (strain rate γ = 0.17–0.20 d−1) from a circular shape (50 km2) into a long filament of ∼400 km2 by day 10. Slippage between layers saw the patch-head overlying noninfused waters while the tail was capped by adjacent surface waters resulting in a SF6 maximum at depth. As the patch developed it entrained adjacent waters containing higher chlorophyll concentrations, but similar dissolved iron (DFe) levels, than the initial infused patch. DFe was low ∼60 pmol L−1 in surface waters during FeCycle and was dominated by organic complexation. Nighttime measurements of Fe(II) ∼20 pmol L−1 suggest the presence of Fe(II) organic complexes in the absence of an identifiable fast Fe(III) reduction process. Combining residence times and phytoplankton uptake fluxes for DFe it is cycled through the biota 140–280 times before leaving the winter mixed layer (WML). This strong Fe demand throughout the euphotic zone coupled with the low Fe:NO3 − (11.9 μmol:mol) below the ferricline suggests that vertical diffusion of Fe is insufficient to relieve chronic iron limitation, indicating the importance of atmospheric inputs of Fe to this region

    Insignificant enhancement of export flux in the highly productive subtropical front, east of New Zealand: a high resolution study of particle export fluxes based on Th-234: U-238 disequilibria

    Get PDF
    We evaluated the export fluxes of Particulate Organic Carbon (POC) in the Subtropical Frontal zone (STF) of the SW Pacific sector of the Southern Ocean. The site is characterized by enhanced primary productivity, which has been suggested to be stimulated through so-called natural iron fertilization processes where iron-depleted subantarctic water (SAW) mixes with mesotrophic, iron-replete subtropical water (STW). We adopted the small-volume Th-234 method to achieve the highest possible spatial sampling resolution in austral late autumn-early winter, May-June, 2008. Inventories of chlorophyll-a, particulate Th-234 and POC observed in the upper 100 m were all elevated in the mid-salinity water type (34.5 34.8) salinity waters which were of STW origin with low macronutrients. However, Steady-State Th-234 fluxes were similar across the salinity gradient being, 25 +/- 0.78 ((1.5 +/- 0.047) x 10(3)) in the mid-salinity, and 29 +/- 0.53 ((1.8 +/- 0.032) x 10(3)) and 22 +/- 1.1 Bq m(-2) d(-1) ((1.3 +/- 0.066) x 10(3) dpm m(-2) d(-1)) in the high and low salinity waters respectively. Bottle POC/Th ratios at the depth of 100 m were used to convert Th-234 fluxes into POC export fluxes. The derived POC flux did not appear to be enhanced in mid-salinity waters where the primary productivity was inferred to be the highest at the time of sampling, with a flux of 11 +/- 0.45 mmol C m(-2) d(-1), compared to 14 +/- 0.39 mmol C m(-2) d(-1) in high salinity waters and 8.5 +/- 0.66 mmol C m(-2) d(-1) in low salinity waters. This study thus implied that natural iron fertilization does not necessarily lead to an enhancement of POC export in STF regions

    Seasonal Cycles of Phytoplankton and Net Primary Production from Biogeochemical Argo Float Data in the South-West Pacific Ocean

    Get PDF
    We present annual cycles of chlorophyll a, phytoplankton carbon, nitrate and oxygen for Subtropical (STW), Subantarctic (SAW), and Subantarctic Mode (SAMW) waters near Aotearoa New Zealand from data collected by two Biogeochemical (BGC) Argo floats. We develop two simple models of depth-integrated net primary production (NPP), tuned against 14C-uptake measurements, to compare with Vertically-Generalised Production Model (VGPM) satellite-based estimates of NPP. One model is the simplest possible, and assumes production is proportional to light multiplied by chlorophyll a concentration. The second model modifies the light response profile to account for photoacclimation. In STW at 30–35°S, enhanced production is initiated in austral autumn when the mixed layer deepens to entrain nutrients into the photic zone. For about half the year, there is substantial production within a deep chlorophyll maximum that sits below the mixed layer. Consequently, depth-integrated NPP is only loosely related to surface biomass as imaged from satellite remote-sensing, and BGC Argo-based model estimates of depth-integrated NPP are about double VGPM estimates. In SAW at 45–55°S, production is initiated when vertical mixing decreases in austral spring. Production is largely within the mixed layer, and depth-integrated phytoplankton biomass and depth-integrated NPP follow surface phytoplankton biomass. Model estimates of depth-integrated NPP based on BGC Argo float profiles are comparable with VGPM estimates for the southern water masses
    corecore