263 research outputs found
The BTZ black hole with a time-dependent boundary
The non-rotating BTZ solution is expressed in terms of coordinates that allow
for an arbitrary time-dependent scale factor in the boundary metric. We provide
explicit expressions for the coordinate transformation that generates this form
of the metric, and determine the regions of the complete Penrose diagram that
are convered by our parametrization. This construction is utilized in order to
compute the stress-energy tensor of the dual CFT on a time-dependent
background. We study in detail the expansion of radial null geodesic
congruences in the BTZ background for various forms of the scale factor of the
boundary metric. We also discuss the relevance of our construction for the
holographic calculation of the entanglement entropy of the dual CFT on
time-dependent backgrounds.Comment: 14 pages, 13 figures, title changed in journal, conformal diagrams
added, references added, final version to appear in Classical and Quantum
Gravit
Entanglement Entropy from a Holographic Viewpoint
The entanglement entropy has been historically studied by many authors in
order to obtain quantum mechanical interpretations of the gravitational
entropy. The discovery of AdS/CFT correspondence leads to the idea of
holographic entanglement entropy, which is a clear solution to this important
problem in gravity. In this article, we would like to give a quick survey of
recent progresses on the holographic entanglement entropy. We focus on its
gravitational aspects, so that it is comprehensible to those who are familiar
with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity,
minor correction
Understanding the Interplay Among Regulatory Self-Efficacy, Moral Disengagement, and Academic Cheating Behaviour During Vocational Education: A Three-Wave Study
The literature has suggested that to understand the diffusion of unethical conduct in the workplace, it is important to investigate the underlying processes sustaining engagement in misbehaviour and to study what occurs during vocational education. Drawing on social-cognitive theory, in this study, we longitudinally examined the role of two opposite dimensions of the self-regulatory moral system, regulatory self-efficacy and moral disengagement, in influencing academic cheating behaviour. In addition, in line with the theories highlighting the bidirectional relationship between cognitive processes and behaviour, we aimed to also examine the reciprocal influence of behaviour on these dimensions over time. Overall, no previous studies have examined the longitudinal interplay between these variables. The sample included 866 (62.8% female) nursing students who were assessed three times annually from the beginning of their vocational education. The findings from a cross-lagged model confirmed that regulatory self-efficacy and moral disengagement have opposite influences on cheating behaviour, that regulatory self-efficacy negatively influences not only the engagement in misconduct but also the justification mechanisms that allow the divorce between moral standards and action, and that moral disengagement and cheating behaviour reciprocally support each other over time. Specifically, not only did moral disengagement influence cheating behaviour even when controlling for its prior levels, but also cheating behaviour affected moral disengagement one year later, controlling for its prior levels. These findings suggest that recourse to wrongdoing could gradually lead to further normalising this kind of behaviour and morally desensitising individuals to misconduct
Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification
The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to mediate changes in cancer-stimulated monocytes in vitro. We therefore investigated the relationship of ascorbate with monocyte subsets and epigenetic modifications in patients with metastatic melanoma receiving immunotherapy. Patients receiving immunotherapy were compared to other cancer cohorts and age-matched healthy controls. Ascorbate levels in plasma and peripheral blood-derived mononuclear cells (PBMCs), monocyte subtype and epigenetic markers were measured, and adverse events, tumour response and survival were recorded. A quarter of the immunotherapy cohort had hypovitaminosis C, with plasma and PBMC ascorbate levels significantly lower than those from other cancer patients or healthy controls. PBMCs from the immunotherapy cohort contained similar frequencies of non-classical and classical monocytes. DNA methylation markers and intracellular ascorbate concentration were correlated with monocyte subset frequency in healthy controls, but correlation was lost in immunotherapy patients. No associations between ascorbate status and immune-related adverse events or tumour response or overall survival were apparent.</p
A primary electron beam facility at CERN -- eSPS Conceptual design report
The design of a primary electron beam facility at CERN is described. The
study has been carried out within the framework of the wider Physics Beyond
Colliders study. It re-enables the Super Proton Synchrotron (SPS) as an
electron accelerator, and leverages the development invested in Compact Linear
Collider (CLIC) technology for its injector and as an accelerator research and
development infrastructure. The facility would be relevant for several of the
key priorities in the 2020 update of the European Strategy for Particle
Physics, such as an electron-positron Higgs factory, accelerator R\&D, dark
sector physics, and neutrino physics. In addition, it could serve experiments
in nuclear physics. The electron beam delivered by this facility would provide
access to light dark matter production significantly beyond the targets
predicted by a thermal dark matter origin, and for natures of dark matter
particles that are not accessible by direct detection experiments. It would
also enable electro-nuclear measurements crucial for precise modelling the
energy dependence of neutrino-nucleus interactions, which is needed to
precisely measure neutrino oscillations as a function of energy. The
implementation of the facility is the natural next step in the development of
X-band high-gradient acceleration technology, a key technology for compact and
cost-effective electron/positron linacs. It would also become the only facility
with multi-GeV drive bunches and truly independent electron witness bunches for
plasma wakefield acceleration. A second phase capable to deliver positron
witness bunches would make it a complete facility for plasma wakefield collider
studies. [...
The ubiquitin proteasome system in neuropathology
The ubiquitin proteasome system (UPS) orchestrates the turnover of innumerable cellular proteins. In the process of ubiquitination the small protein ubiquitin is attached to a target protein by a peptide bond. The ubiquitinated target protein is subsequently shuttled to a protease complex known as the 26S proteasome and subjected to degradative proteolysis. The UPS facilitates the turnover of proteins in several settings. It targets oxidized, mutant or misfolded proteins for general proteolytic destruction, and allows for the tightly controlled and specific destruction of proteins involved in development and differentiation, cell cycle progression, circadian rhythms, apoptosis, and other biological processes. In neuropathology, alteration of the UPS, or mutations in UPS target proteins may result in signaling abnormalities leading to the initiation or progression of tumors such as astrocytomas, hemangioblastomas, craniopharyngiomas, pituitary adenomas, and medulloblastomas. Dysregulation of the UPS may also contribute to tumor progression by perturbation of DNA replication and mitotic control mechanisms, leading to genomic instability. In neurodegenerative diseases caused by the expression of mutant proteins, the cellular accumulation of these proteins may overload the UPS, indirectly contributing to the disease process, e.g., sporadic Parkinsonism and prion diseases. In other cases, mutation of UPS components may directly cause pathological accumulation of proteins, e.g., autosomal recessive Parkinsonism and spinocerebellar ataxias. Defects or dysfunction of the UPS may also underlie cognitive disorders such as Angelman syndrome, Rett syndrome and autism, and muscle and nerve diseases, e.g., inclusion body myopathy and giant axon neuropathy. This paper describes the basic biochemical mechanisms comprising the UPS and reviews both its theoretical and proven involvement in neuropathological diseases. The potential for the UPS as a target of pharmacological therapy is also discussed
Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species
- …
