807 research outputs found
Recommended from our members
Radionuclide Labeling and Evaluation of Candidate Radioligands for PET Imaging of Histone Deacetylase in the Brain
Histone deacetylases (HDACs) regulate gene expression by inducing conformational changes in chromatin. Ever since the discovery of a naturally occurring HDAC inhibitor, trichostatin A (TSA) stimulated the recent development of suberoylanilide (SAHA, Zolinza®), HDAC has become an important molecular target for drug development. This has created the need to develop specific in vivo radioligands to study epigenetic regulation and HDAC engagement for drug development for diseases including cancer and psychiatric disorders. 6-([18F]Fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) was recently developed as a HDAC substrate and shows moderate blood–brain barrier (BBB) permeability and specific signal (by metabolic trapping/or deacetylation) but rapid metabolism. Here, we report the radiosynthesis of two carbon-11 labeled candidate radiotracers (substrate- and inhibitor-based radioligand) for HDAC and their evaluation in non-human primate brain. PET studies showed very low brain uptake and rapid metabolism of both labeled compounds but revealed a surprising enhancement of brain penetration by F for H substitution when comparing one of these to [18F]FAHA. Further structural refinement is needed for the development of brain-penetrant, metabolically stable HDAC radiotracers and to understand the role of fluorine substitution on brain penetration.Chemistry and Chemical Biolog
Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications”,
Drug addiction encompasses a relapsing cycle of intoxication, bingeing, withdrawal and craving that results in excessive drug use despite adverse consequences (FIG. 1). Drugs that are abused by humans increase dopamine in the reward circuit and this is believed to underlie their rewarding effects. Therefore, most clinical studies in addiction have focused on the midbrain dopamine areas (the ventral tegmental area and substantia nigra) and the basal ganglia structures to which they project (the ventral striatum, where the nucleus accumbens is located, and the dorsal striatum), which are known to be involved in reward, conditioning and habit formation On the basis of imaging findings and emerging preclinical studies 5,6 , we proposed 10 years ago that disrupted function of the PFC leads to a syndrome of impaired response inhibition and salience attribution (iRISA) in addiction Here we review imaging studies into the role of the PFC in addiction from the past decade, integrating them into the iRISA model with the aim to gain a greater understanding of the dysfunction of the PFC in addiction. Specifically, this is the first systematic evaluation of the role of distinct regions within the functionally heterogeneous PFC in the neuropsychological mechanisms that putatively underlie the relapsing cycle of addiction. We review positron emission tomography (PET) and functional MRI (fMRI) studies focusing on regions of the PFC that have been implicated in addiction. These include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) (see R E V I E W S Non-contingent administration Administration of a certain drug that is not dependent on the subject's behaviour. Fixed-rate self-administration Self-administration of a certain drug on a ratio between drug delivery and behaviour that is fixed by an experimenter (for example, after emission of a certain number of responses or after a certain time has elapsed following the previous response). into the executive function of the PFC we refer the reader to other reviews Direct effects of drug exposure Here, we review studies that assessed the effects of stimulant and non-stimulant drugs on PFC activity 18 Fluorodyoxyglucose PET (PET FDG) study, administration of the stimulant drug methylphenidate (MPH) to active cocaine users increased whole-brain glucose metabolism 14 . Here, the left lateral OFC showed greater metabolism in response to unexpected than to expected MPH; the opposite pattern to that of the BOLD effect in the above study 13 possibly reflects the different temporal sensitivity of the imaging modalities (see below). Stimulant drugs also increase PFC activity in laboratory animals. For example, regional cerebral blood flow (rCBF) in drug-naive rhesus monkeys increased in DLPFC after non-contingent administration and in ACC during a simple fixed-rate self-administration of cocain
- …
