248 research outputs found
Groundwater Quality Assessment from Domestic Water Wells in the Fayetteville Shale Gas Play Area in Central Arkansas
This study establishes a spatially distributed domestic water well groundwater quality data set, throughout the Fayetteville Shale Gas Play (FSGP) in central Arkansas. The data set facilitates characterization of the geology and groundwater quality across the study area, benefits residents who may have concerns about the potential impacts on their well water quality, and provides a groundwater quality basis to which complaints can be compared and resolved. The assessment included: research of the study area, site reconnaissance, water sampling and collection, interviews with owners of the property, analytical analysis, Quality Assurance and Quality Control, and groundwater data interpretation.
The study area is a mixture of: agriculture, national forestry, wetlands, pasture/rangeland, residential development, industrial, and natural gas exploration and extraction. Out of 105 samples analyzed, 104 met the EPA\u27s Safe Drinking Water (SDW) Maximum Contaminant Levels with one exceeding the SDW standards for nitrate as nitrogen. Two constituents (iron and manganese) exceeded the EPA\u27s SDW SMCLs in several of the groundwater samples, but pose no health risks to humans. Based on the data of 105 groundwater samples, all wells were within the pre-existing groundwater quality parameters for central Arkansas as compared to historical data from the U.S. Geological Survey, and others. A few groundwater samples showed outliers, possibly due to: anthropogenic conditions, laboratory errors or field collection issues.
The direct rock/water interaction and redox processes that contribute to the groundwater quality in the study area are controlled by three factors 1) recharge percolating through thin organic rich soils 2) domestic water wells withdrawing from vertical fractures that interact with multiple lithologies dominated by sandstones and shales, and 3) normal south-trending faults and very low permeability in the Western Interior Plains Confining system that results in small isolated basins that are dominated by short lateral flow to seeps and springs
Hermann Cohen und Adolf Deißmann: Dokumente aus dem Nachlaß Adolf Deißmanns
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.Adolf Deißmann (1866–1937), New Testament scholar in Heidelberg and Berlin as well as one of the most important figures in the ecumenical movement after World War I, studied with the neo-Kantian Hermann Cohen (1844–1918) in Marburg and felt a lifelong debt to him. Documents presented here from Deißmann's literary estate not only convey insight into the personal relationship between Deißmann and Cohen, but also show the connections between Cohen's philosophy and Deißmann's engagement in Friedrich Naumann's National Social Union as well as his research on the New Testament. The edition thus serves at the same time as a contribution to the controversial matter of the relationship between Kulturprotestantismus and liberal Judaism around 1900.Peer Reviewe
Altitude of the Potentiometric Surface in the Mississippi River Valley Alluvial Aquifer, Spring 2018
The Mississippi River Valley alluvial (MRVA) aquifer is an important surficial aquifer in the Mississippi Alluvial Plain (MAP) area. The aquifer is generally considered to be an unconfined aquifer (fig. 1; Clark and others, 2011), and withdrawals are primarily used for irrigation (Maupin and Barber, 2005). These groundwater withdrawals have resulted in substantial areas of water-level decline in parts of the aquifer. Concerns about water-level declines and the sustainability of the MRVA aquifer have prompted the U.S. Geological Survey (USGS), as part of the USGS Water Availability and Use Science Program and with assistance from other Federal, State, and local agencies, to undertake a regional water-availability study to assess the characteristics of the MRVA aquifer, including the potentiometric-surface altitude of the MRVA aquifer for spring 2018, and to provide information to water managers to inform their decisions about resource allocations and aquifer sustainability. The purpose of this report was to present a potentiometric-surface map for the MRVA aquifer using manually measured groundwater-altitude data and daily mean or maximum groundwater-altitude data from wells measured generally in spring 2018, which is after water levels have substantially recovered from pumping in the previous irrigation season and before pumping begins for the next irrigation season, and using the altitude of the top of the water surface in rivers in the area, hereinafter referred to as “surface-water altitude,” generally on April 10, 2018, from streamgages in the area. The term “potentiometric surface” is used in this report because it is applicable for maps of the groundwater-altitude surface in unconfined, semiconfined, and confined aquifers (Lohman, 1972). In this report, the maps of the MRVA aquifer’s groundwater surface are termed potentiometric-surface maps as opposed to water-table maps because, although the MRVA aquifer generally exhibits characteristics of unconfined conditions, where surface-water features may or may not be hydraulically connected, it also exhibits characteristics of confined or semiconfined conditions in some areas at least during part of the year. The location of these areas, where the aquifer is confined or semiconfined, is not well understood or defined (Arthur, 1994; Kleiss and others, 2000).
Datasets used attache
Altitude of the Potentiometric Surface in the Mississippi River Valley Alluvial Aquifer, Spring 2018
The Mississippi River Valley alluvial (MRVA) aquifer is an important surficial aquifer in the Mississippi Alluvial Plain (MAP) area. The aquifer is generally considered to be an unconfined aquifer (fig. 1; Clark and others, 2011), and withdrawals are primarily used for irrigation (Maupin and Barber, 2005). These groundwater withdrawals have resulted in substantial areas of water-level decline in parts of the aquifer. Concerns about water-level declines and the sustainability of the MRVA aquifer have prompted the U.S. Geological Survey (USGS), as part of the USGS Water Availability and Use Science Program and with assistance from other Federal, State, and local agencies, to undertake a regional water-availability study to assess the characteristics of the MRVA aquifer, including the potentiometric-surface altitude of the MRVA aquifer for spring 2018, and to provide information to water managers to inform their decisions about resource allocations and aquifer sustainability. The purpose of this report was to present a potentiometric-surface map for the MRVA aquifer using manually measured groundwater-altitude data and daily mean or maximum groundwater-altitude data from wells measured generally in spring 2018, which is after water levels have substantially recovered from pumping in the previous irrigation season and before pumping begins for the next irrigation season, and using the altitude of the top of the water surface in rivers in the area, hereinafter referred to as “surface-water altitude,” generally on April 10, 2018, from streamgages in the area. The term “potentiometric surface” is used in this report because it is applicable for maps of the groundwater-altitude surface in unconfined, semiconfined, and confined aquifers (Lohman, 1972). In this report, the maps of the MRVA aquifer’s groundwater surface are termed potentiometric-surface maps as opposed to water-table maps because, although the MRVA aquifer generally exhibits characteristics of unconfined conditions, where surface-water features may or may not be hydraulically connected, it also exhibits characteristics of confined or semiconfined conditions in some areas at least during part of the year. The location of these areas, where the aquifer is confined or semiconfined, is not well understood or defined (Arthur, 1994; Kleiss and others, 2000).
Datasets used attache
Wnt1 promotes cementum and alveolar bone growth in a time-dependent manner
The WNT/β-catenin signaling pathway plays a central role in the biology of the periodontium, yet the function of specific extracellular WNT ligands remains poorly understood. By using a Wnt1-inducible transgenic mouse model targeting Col1a1-expressing alveolar osteoblasts, odontoblasts, and cementoblasts, we demonstrate that the WNT ligand WNT1 is a strong promoter of cementum and alveolar bone formation in vivo. We induced Wnt1 expression for 1, 3, or 9 wk in Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk. Micro–computed tomography (CT) analyses of the mandibles revealed a 1.8-fold increased bone volume after 1 and 3 wk of Wnt1 expression and a 3-fold increased bone volume after 9 wk of Wnt1 expression compared to controls. In addition, the alveolar ridges were higher in Wnt1Tg mice as compared to controls. Nondecalcified histology demonstrated increased acellular cementum thickness and cellular cementum volume after 3 and 9 wk of Wnt1 expression. However, 9 wk of Wnt1 expression was also associated with periodontal breakdown and ectopic mineralization of the pulp. The composition of this ectopic matrix was comparable to those of cellular cementum as demonstrated by quantitative backscattered electron imaging and immunohistochemistry for noncollagenous proteins. Our analyses of 52-wk-old mice after 9 wk of Wnt1 expression revealed that Wnt1 expression affects mandibular bone and growing incisors but not molar teeth, indicating that Wnt1 influences only growing tissues. To further investigate the effect of Wnt1 on cementoblasts, we stably transfected the cementoblast cell line (OCCM-30) with a vector expressing Wnt1-HA and performed proliferation as well as differentiation experiments. These experiments demonstrated that Wnt1 promotes proliferation but not differentiation of cementoblasts. Taken together, our findings identify, for the first time, Wnt1 as a critical regulator of alveolar bone and cementum formation, as well as provide important insights for harnessing the WNT signal pathway in regenerative dentistry
Wnt1’s Differential Effects on Craniofacial Bone and Tooth Development
The development of craniofacial bones and teeth relies heavily on the Wnt signaling pathway, yet the specific mechanisms and Wnt variants involved remain under continual investigation. Using publicly available single-cell sequencing data from the mouse incisor, we reveal Wnt1 expression across dental structures and investigate its role using a Col1a1-dependent Wnt1 transgenic mouse model. Inducing Wnt1 early on affects craniofacial bone without disturbing tooth development, but prolonged embryonic induction leads to postnatal mortality with osteopetrosis-like bone overgrowth and malformed teeth. While tooth formation was initially unaffected by postnatal Wnt1 induction, prolonged activation impaired tooth root formation and odontoblast differentiation, resulting in shortened roots and thinner dentin. Three-dimensional micro–computed tomography quantification reveal that both embryonic and postnatal activation of Wnt1 significantly increase neural crest–derived craniofacial bone volume, whereas mesenchymal-derived craniofacial bones are unaffected. Importantly, osteoclastogenesis is suppressed by Wnt1 in a dose-dependent manner, revealed through bulk RNA sequencing and in vitro experiments. These findings emphasize the differential effects of Wnt1 on bone development based on origin and highlight its role in modulating osteoclast activity, indicating broader implications for craniofacial development and potential therapeutic avenues.</p
Comparison of three surgical approaches for cervicothoracic spinal tuberculosis: a retrospective case–control study
Protestantismus und Moderne: Adolf Harnacks Programm einer historischen Plausibilisierung des Christentums
- …
