4,949 research outputs found
Some remarks on stability for a phase-field model with memory
The phase field system with memory can be viewed as a phenomenological extension of the classical phase equations in which memory effects have been taken into account in both fields. Such memory effects could be important for example during phase transition in polymer melts in the proximity of the glass transition temperature where configurational degrees of freedom in the polymer melt constitute slowly relaxing "internal modes" which are di±cult to model explicitly. They should be relevant in particular to glass-liquid-glass transitions where re-entrance effects have been recently reported [27]. We note that in numerical studies based on sharp interface equations obtained from (PFM), grains have been seen to rotate as they shrink [35, 36]. While further modelling and numerical efforts are now being undertaken, the present manuscript is devoted to strengthening the analytical underpinnings of the model
Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation
The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number
Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections
We consider a stochastic partial differential equation with two logarithmic
nonlinearities, with two reflections at 1 and -1 and with a constraint of
conservation of the space average. The equation, driven by the derivative in
space of a space-time white noise, contains a bi-Laplacian in the drift. The
lack of the maximum principle for the bi-Laplacian generates difficulties for
the classical penalization method, which uses a crucial monotonicity property.
Being inspired by the works of Debussche, Gouden\`ege and Zambotti, we obtain
existence and uniqueness of solution for initial conditions in the interval
. Finally, we prove that the unique invariant measure is ergodic, and
we give a result of exponential mixing
Impulsive phase solar flare X-ray polarimetry
The pioneering observational work in solar flare X-ray polarimetry was done in a series of satellite experiments by Tindo and his collaborators in the Soviet Union; initial results showed high levels of polarization in X-ray flares (up to 40%), although of rather low statistical significance, and these were generally interpreted as evidence for strong beaming of suprathermal electrons in the flare energy release process. However, the results of the polarimeter flown by the Columbia Astrophysics Laboratory as part of the STS-3 payload on the Space Shuttle by contrast showed very low levels of polarization. The largest value (observed during the impulsive phase of a single event) was 3.4% + or - 2.2%. At the same time but independent of the observational work, Leach and Petrosian (1983) showed that the high levels of polarization in the Tindo results were difficult to understand theoretically, since the electron beam is isotropized on an energy loss timescale. A subsequent comparison by Leach, Emslie, and Petrosian (1985) of the impulsive phase STS-3 result and the above theoretical treatment shows that the former is consistent with several current models and that a factor of approximately 3 improvement in sensitivity is needed to distinguish properly among the possibilities
Spectroscopy from 2 to 200 keV
The astrophysical processes responsible for line and continuum emission in the spectra range 2 keV to 200 keV are examined from the viewpoint of designing a spectrometer which would operate in this regime. Phenomena considered include fluorescent line radiation in X-ray binaries, magnetically shifted iron lines and cyclotron emission from neutron star surfaces, line emission from cosmically abundant elements in thermal plasmas, and nuclear deexcitation lines in fresh nucleosynthetically produced matter. An instrument consisting of a approximately 10 sq cm array of planar germanium detectors surrounded by a large sodium-iodide anticoincidence shield is described and projected background rates and sensitivities are considered. A sample observing program for a two-day shuttle-based mission is included as an example of the wide range of scientific questions which could be addressed by such an instrument
Water vapor δ2H, δ18O and δ17O measurements using an off-axis integrated cavity output spectrometer – sensitivity to water vapor concentration, delta value and averaging-time
Rationale
High-precision analysis of atmospheric water vapor isotope compositions, especially δ17O values, can be used to improve our understanding of multiple hydrological and meteorological processes (e.g., differentiate equilibrium or kinetic fractionation). This study focused on assessing, for the first time, how the accuracy and precision of vapor δ17O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time.
Methods
A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ2H, δ18O and δ17O measurements. The sensitivity of accuracy and precision to water vapor concentration was evaluated using two international standards (GISP and SLAP2). The sensitivity of precision to delta value was evaluated using four working standards spanning a large delta range. The sensitivity of precision to averaging-time was assessed by measuring one standard continuously for 24 hours.
Results
Overall, the accuracy and precision of the δ2H, δ18O and δ17O measurements were high. Across all vapor concentrations, the accuracy of δ2H, δ18O and δ17O observations ranged from 0.10‰ to 1.84‰, 0.08‰ to 0.86‰ and 0.06‰ to 0.62‰, respectively, and the precision ranged from 0.099‰ to 0.430‰, 0.009‰ to 0.080‰ and 0.022‰ to 0.054‰, respectively. The accuracy and precision of all isotope measurements were sensitive to concentration, with the higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000–15000 ppm) for all isotopes. The precision was also sensitive to the range of delta values, although the effect was not as large compared with the sensitivity to concentration. The precision was much less sensitive to averaging-time than the concentration and delta range effects.
Conclusions
The accuracy and precision performance of the T-WVIA depend on concentration but depend less on the delta value and averaging-time. The instrument can simultaneously and continuously measure δ2H, δ18O and δ17O values in water vapor, opening a new window to better understand ecological, hydrological and meteorological processes
Trajectory and smooth attractors for Cahn-Hilliard equations with inertial term
The paper is devoted to a modification of the classical Cahn-Hilliard
equation proposed by some physicists. This modification is obtained by adding
the second time derivative of the order parameter multiplied by an inertial
coefficient which is usually small in comparison to the other physical
constants. The main feature of this equation is the fact that even a globally
bounded nonlinearity is "supercritical" in the case of two and three space
dimensions. Thus the standard methods used for studying semilinear hyperbolic
equations are not very effective in the present case. Nevertheless, we have
recently proven the global existence and dissipativity of strong solutions in
the 2D case (with a cubic controlled growth nonlinearity) and for the 3D case
with small inertial coefficient and arbitrary growth rate of the nonlinearity.
The present contribution studies the long-time behavior of rather weak (energy)
solutions of that equation and it is a natural complement of the results of our
previous papers. Namely, we prove here that the attractors for energy and
strong solutions coincide for both the cases mentioned above. Thus, the energy
solutions are asymptotically smooth. In addition, we show that the non-smooth
part of any energy solution decays exponentially in time and deduce that the
(smooth) exponential attractor for the strong solutions constructed previously
is simultaneously the exponential attractor for the energy solutions as well
Ressenyes
Index de les obres ressenyades: Susana NOVICK (dir.), Migraciones y MERCOSUR : una relación inconclusa. Buenos Aires: Editorial Catálogos. Universidad de Buenos Aires. Facultad de Ciencias Sociales, Instituto Gino Germani, 2010
Gamma-Ray Polarimetry of Two X-Class Solar Flares
We have performed the first polarimetry of solar flare emission at gamma-ray
energies (0.2-1 MeV). These observations were performed with the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI) for two large flares: the GOES
X4.8-class solar flare of 2002 July 23, and the X17-class flare of 2003 October
28. We have marginal polarization detections in both flares, at levels of 21%
+/- 9% and -11% +/- 5% respectively. These measurements significantly constrain
the levels and directions of solar flare gamma-ray polarization, and begin to
probe the underlying electron distributions.Comment: 33 pages, 12 figures, accepted for publication in Ap
Screening disability insurance applications
This paper investigates the effects of stricter screening of disability insurance applications. A large-scale experiment was setup where in two of the 26 Dutch regions case workers of the disability insurance administration were instructed to screen applications more stringently. The empirical results show that stricter screening reduces long-term sickness absenteeism and disability insurance applications. We find evidence for direct effects of stricter screening on work resumption during the period of sickness absence and for self-screening by potential disability insurance applicants. Stricter screening seems to improve targeting efficiency, without inducing negative spillover effects to the inflow into unemployment insurance. The costs of stricter screening are only a small fraction of the monetary benefits.Disability insurance; experiment; policy evaluation; sickness absenteeism; self-screening
- …
