694 research outputs found
Generation, Ranking and Unranking of Ordered Trees with Degree Bounds
We study the problem of generating, ranking and unranking of unlabeled
ordered trees whose nodes have maximum degree of . This class of trees
represents a generalization of chemical trees. A chemical tree is an unlabeled
tree in which no node has degree greater than 4. By allowing up to
children for each node of chemical tree instead of 4, we will have a
generalization of chemical trees. Here, we introduce a new encoding over an
alphabet of size 4 for representing unlabeled ordered trees with maximum degree
of . We use this encoding for generating these trees in A-order with
constant average time and O(n) worst case time. Due to the given encoding, with
a precomputation of size and time O(n^2) (assuming is constant), both
ranking and unranking algorithms are also designed taking O(n) and O(nlogn)
time complexities.Comment: In Proceedings DCM 2015, arXiv:1603.0053
A general class of spreading processes with non-Markovian dynamics
In this paper we propose a general class of models for spreading processes we
call the model. Unlike many works that consider a fixed number of
compartmental states, we allow an arbitrary number of states on arbitrary
graphs with heterogeneous parameters for all nodes and edges. As a result, this
generalizes an extremely large number of models studied in the literature
including the MSEIV, MSEIR, MSEIS, SEIV, SEIR, SEIS, SIV, SIRS, SIR, and SIS
models. Furthermore, we show how the model allows us to model
non-Poisson spreading processes letting us capture much more complicated
dynamics than existing works such as information spreading through social
networks or the delayed incubation period of a disease like Ebola. This is in
contrast to the overwhelming majority of works in the literature that only
consider spreading processes that can be captured by a Markov process. After
developing the stochastic model, we analyze its deterministic mean-field
approximation and provide conditions for when the disease-free equilibrium is
stable. Simulations illustrate our results
- …
