2,090 research outputs found
ATLAS Monitored Drift Tube Chambers in E = 11 MeV Neutron Background
The influence of fast neutrons on the occupancy and the single tube
resolution of ATLAS muon drift detectors was investigated by exposing a chamber
built out of 3 layers of 3 short standard drift tubes to neutron flux-densities
of up to 16 kHz/cm2 at a neutron energy of E=11 MeV. Pulse shape capable NE213
scintillaton detectors and a calibrated BF3 neutron detector provided
monitoring of the neutron flux-density and energy. The sensitivity of the drift
chamber to the neutrons was measured to be 4*10-4 by comparing data sets with
and without neutron background. For the investigation of tracks of cosmic muons
two silicon-strip detectors above and underneath the chamber allow to compare
measured drift-radii with reference tracks. Alternatively, the single tube
resolution was determined using the triple-sum method. The comparison between
data with and without neutron irradiation shows only a marginal effect on the
resolution and little influence on the muon track reconstruction.Comment: 4 pages, 11 figures, conferenc
Cosmic ray tests of the D0 preshower detector
The D0 preshower detector consists of scintillator strips with embedded
wavelength-shifting fibers, and a readout using Visible Light Photon Counters.
The response to minimum ionizing particles has been tested with cosmic ray
muons. We report results on the gain calibration and light-yield distributions.
The spatial resolution is investigated taking into account the light sharing
between strips, the effects of multiple scattering and various systematic
uncertainties. The detection efficiency and noise contamination are also
investigated.Comment: 27 pages, 24 figures, submitted to NIM
A Cosmic Ray Measurement Facility for ATLAS Muon Chambers
Monitored Drift Tube (MDT) chambers will constitute the large majority of
precision detectors in the Muon Spectrometer of the ATLAS experiment at the
Large Hadron Collider at CERN. For commissioning and calibration of MDT
chambers, a Cosmic Ray Measurement Facility is in operation at Munich
University. The objectives of this facility are to test the chambers and
on-chamber electronics, to map the positions of the anode wires within the
chambers with the precision needed for standalone muon momentum measurement in
ATLAS, and to gain experience in the operation of the chambers and on-line
calibration procedures.
Until the start of muon chamber installation in ATLAS, 88 chambers built at
the Max Planck Institute for Physics in Munich have to be commissioned and
calibrated. With a data taking period of one day individual wire positions can
be measured with an accuracy of 8.3 micrometers in the chamber plane and 27
micrometers in the direction perpendicular to that plane.Comment: 14+1 pages, 11 figures, contributed paper to the EPS2003 conference,
Aache
Dirac Neutrino Dark Matter
We investigate the possibility that dark matter is made of heavy Dirac
neutrinos with mass in the range [O(1) GeV- a few TeV] and with suppressed but
non-zero coupling to the Standard Model Z as well as a coupling to an
additional Z' gauge boson. The first part of this paper provides a
model-independent analysis for the relic density and direct detection in terms
of four main parameters: the mass, the couplings to the Z, to the Z' and to the
Higgs. These WIMP candidates arise naturally as Kaluza-Klein states in
extra-dimensional models with extended electroweak gauge group SU(2)_L* SU(2)_R
* U(1). They can be stable because of Kaluza-Klein parity or of other discrete
symmetries related to baryon number for instance, or even, in the low mass and
low coupling limits, just because of a phase-space-suppressed decay width. An
interesting aspect of warped models is that the extra Z' typically couples only
to the third generation, thus avoiding the usual experimental constraints. In
the second part of the paper, we illustrate the situation in details in a
warped GUT model.Comment: 35 pages, 25 figures; v2: JCAP version; presentation and plots
improved, results unchange
The Fourth Standard Model Family and the Competition in Standart Model Higgs Boson Search at Tevatron and LHC
The impact of the fourth Standard Model family on Higgs boson search at
Tevatron and LHC is reviewed.Comment: 7 pages, 13 figure
Measurements of single top quark production cross sections and |Vtb| in ppbar collisions at sqrt{s}=1.96 TeV
We present measurements of production cross sections of single top quarks in
\ppbar collisions at in a data sample corresponding
to an integrated luminosity of collected by the D0 detector
at the Fermilab Tevatron Collider. We select events with an isolated electron
or muon, an imbalance in transverse energy, and two, three, or four jets, with
one or two of them containing a bottom hadron. We obtain an inclusive cross
section of \sigma({\ppbar}{\rargap}tb+X, tqb+X) = 3.43\pm^{0.73}_{0.74}\;\rm
pb and use it to extract the CKM matrix element at
the 95% C.L. We also measure \sigma({\ppbar}{\rargap}tb+X) =
0.68\pm^{0.38}_{0.35}\;\rm pb and \sigma({\ppbar}{\rargap}tqb+X) =
2.86\pm^{0.69}_{0.63}\;\rm pb when assuming, respectively, and
production rates as predicted by the standard model.Comment: 11 pages, 8 figures, submitted to Phys. Rev.
A search for the standard model Higgs boson in the missing energy and acoplanar b-jet topology at sqrt(s) = 1.96 TeV
We report a search for the standard model Higgs boson in the missing energy
and acoplanar b-jet topology, using an integrated luminosity of 0.93 inverse
femtobarn recorded by the D0 detector at the Fermilab Tevatron Collider. The
analysis includes signal contributions from pp->ZH->nu nu b b, as well as from
WH production in which the charged lepton from the W boson decay is undetected.
Neural networks are used to separate signal from background. In the absence of
a signal, we set limits on the cross section of pp->VH times the branching
ratio of H->bb at the 95% C.L. of 2.6 - 2.3 pb, for Higgs boson masses in the
range 105 - 135 GeV, where V=W,Z. The corresponding expected limits range from
2.8 pb - 2.0 pb.Comment: Submitted to Phys. Rev. Letter
Observation of ZZ production in ppbar collisions at sqrt(s) = 1.96 TeV
We present an observation for ZZ -> l+l-l'+l'- (l, l' = e or mu) production
in ppbar collisions at a center-of-mass energy of sqrt(s) = 1.96 TeV. Using 1.7
fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider,
we observe three candidate events with an expected background of 0.14 +0.03
-0.02 events. The significance of this observation is 5.3 standard deviations.
The combination of D0 results in this channel, as well as in ZZ -> l+l-nunubar,
yields a significance of 5.7 standard deviations and a combined cross section
of sigma(ZZ) = 1.60 +/- 0.63 (stat.) +0.16 -0.17 (syst.) pb.Comment: 7 pages, 1 figure, 2 tables Modified slightly following review
proces
Search for Decay
We have searched for the charmless hadronic decay of B0 mesons into two
neutral pions. Using 9.13fb^-1 taken at the Upsilon(4S) with the CLEO detector,
we obtain an improved upper limit for the branching fraction BR(B0-->pi0pi0) <
5.7*10^-6 at the 90% confidence level.Comment: pages postscript, also available through
http://w4.lns.cornell.edu/public/CLN
Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV
We report a search for a narrow ttbar resonance that decays into a
lepton+jets final state based on an integrated luminosity of 5.3/fb of
proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0
Collaboration at the Fermilab Tevatron Collider. We set upper limits on the
production cross section of such a resonance multiplied by its branching
fraction to ttbar which we compare to predictions for a leptophobic topcolor Z'
boson. We exclude such a resonance at the 95% confidence level for masses below
835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter
- …
