1,095 research outputs found

    Nucleation and particle coagulation experiments in microgravity

    Get PDF
    Measurements of the conditions under which carbon, aluminum oxide, and silicon carbide smokes condense and of the morphology and crystal structure of the resulting grains are essential if the nature of the materials ejected into the interstellar medium and the nature of the grains which eventually became part of the proto solar nebular are to be understood. Little information is currently available on the vapor-solid phase transitions of refractory metals and solids. What little experimental data do exist are, however, not in agreement with currently accepted models of the nucleation process for more volatile materials. The major obstacle to performing such experiments in earth-based laboratories is the susceptibility of these systems to convection. Evaporation of refractory materials into a low-pressure environment with a carefully controlled temperature gradient will produce refractory smokes when the critical supersaturation of the system is exceeded. Measurement of the point at which nucleation occurs, via light scattering or extinction, can not only yield nucleation data but also, information on the chemical composition and crystal structure of the condensate. Experimental requirements are presented

    Dust collection on serviceable satellites

    Get PDF
    One rationale for the Space Shuttle program which was dramatically realized during the repair of the Solar Maximum Mission (SMM) is the efficiency of in-orbit satellite servicing. An unexpected benefit of this repair mission was the return of parts of the Solar Max satellite which had been exposed for four years to the space environment. Studies conducted on these parts have yielded valuable data on the micrometeorite flux and composition at shuttle altitudes during this time period. The scientific results from studies of the cosmic dust component of the observed particle impacts are not yet complete but it is clear from the preliminary data available that such studies will be a valuable adjunct to the studies of cosmic dust particles collected in the atmosphere. The success of the initial studies of particles collected during repairs of the SMM spacecraft on a surface not specifically designed as a particle collector nor retrieved in a manner intended to minimize or eliminate local contamination raises the possibility that even more interesting results might be obtained if serviceable satellites were initially designed with these objectives in mind. All designs for modern satellites utilize some form of thermal blanket material in order to minimize thermal stresses inside the spacecraft. It is proposed that all future satellites be designed with standardized removeable sections of thermal blanket material which could be replaced during on-orbit servicing and returned to earth for detailed study

    Metamorphism of cosmic dust: Processing from circumstellar outflows to the cometary regolith

    Get PDF
    Metamorphism of refractory particles continues in the interstellar medium (ISM) where the driving forces are sputtering by cosmic ray particles, annealing by high energy photons, and grain destruction in supernova generated shocks. Studies of the depletion of the elements from the gas phase of the interstellar medium tell us that if grain destruction occurs with high efficiency in the ISM, then there must be some mechanism by which grains can be formed in the ISM. Most grains in a cloud which collapses to form a star will be destroyed; many of the surviving grains will be severely processed. Grains in the outermost regions of the nebula may survive relatively unchanged by thermal processing or hydration. It is these grains which one hopes to find in comets. However, only those grains encased in ice at low temperature can be considered pristine since a considerable degree of hydrous alteration might occur in a cometary regolith if the comet enters the inner solar system. The physical, chemical and isotopic properties of a refractory grain at each stage of its life cycle will be discussed

    Workshop on the Origins of Solar Systems

    Get PDF
    Topics addressed include: interstellar chemistry and primitive bodies; astronomical measurements and nebula models; solar nebula models and meteorite; and planetary accumulation and evolution

    Formation Mechanism of Iron-Rich Olivine: Experimental Constrains into Early Fluid-Assisted Hydration and Dehydration Processes on Asteroids

    Get PDF
    Iron-rich olivine is one of the major minerals in the matrices of unequilibrated ordinary (UOCs) and carbonaceous (CV, CK, CO) chondrites whose petrologic type is >3.1. There has been an extensive discussion in the literature as to the formation mechanism of these olivines; however, their origin is poorly understood. The formation of ferroan olivine during hydrothermal alteration has been demonstrated to be thermodynamically viable. The stability of ferroan olivine is highly dependent on several variables, including temperature, water/ rock (W/R) ratio, pressure, oxygen fugacity, and bulk rock composition. So far, hydrothermal alteration experiments have not been successful at forming FeO-rich olivines with the compositions and textures observed in the matrices of chondrites. Therefore, understanding the formation conditions of FeO-rich olivines remains a key problem to explain the effects of hydrothermal alteration on chondrite matrices

    Ultraviolet spectroscopy of meteoric debris: In situ calibration experiments from earth orbit

    Get PDF
    It is proposed to carry out slitless spectroscopy at ultraviolet wavelengths from orbit of meteoric debris associated with comets. The Eta Aquarid, Orionid/Halley, and the Persied/1962 862 Swift-Tuttle showers would be principal targets. Low light level, ultraviolet video technique will be used during the night side of the orbit in a wide field, earthward viewing mode. Data will be stored in compact video cassette recorders. The experiment may be configured as a GAS package or in the HITCHHIKER mode. The latter would allow flexible pointing capability beyond that offered by shuttle orientation of the GAS package, and doubling of the data record. The 1100 to 3200 A spectral region should show emissions of atomic, ionic, and molecular species of interest on cometary and solar system studies

    Laboratory Studies of Fischer-Tropsch-Type Reactions and Their Implications for Organics in Asteroids and Comets

    Get PDF
    We have been studying Fischer-Tropsch type (FTT) reactions as a source for organic materials both in the gas phase of the solar nebula and incorporated into primitive comets and asteroids for almost 10 years, and over this time our concept has evolved greatly from the standard "catalytic" model to a much more robust chemical scenario. Our simulations have been conducted at temperatures that are much higher than we like, primarily for practical reasons such as the timescale of individual reactions, and we are just starting a series of measurements to allow us to measure reaction rates at temperatures from 873K down to as low as 373K. We have preliminary data on the carbon (d13C = -50) & nitrogen (d15N = +9.5) isotopic fractionation at 873K, but not on materials produced at lower temperature. Isotope values are on the VPDB scale for carbon and vs. Air for nitrogen. We have also investigated the noble gas trapping efficiency of the FTT process by adding a small amount of a noble gas mix to our standard synthesis mix. The noble gas ratio is 49:49:1:1::Ne:Ar:Kr:Xe. Xe and Kr are trapped at 873K and are more efficiently trapped at 673K with no isotopic fractionation at either temperature. Ar trapping is detected at 673K, but not at 873K. Ne has not yet been observed in our samples. The solar nebula was an extremely complex system, mixing materials from the innermost regions out to well into the zones where comets formed and thus mixing highly processed nebular materials with grains and coatings formed before the nebula began to collapse. Laboratory studies may provide the means to separate such diverse components based on carbon or nitrogen isotopic fractionation or the quantities of noble gases trapped in grain coatings and their thermal release patterns, among other observables. The ultimate goal of laboratory synthesis of nebular analogs is to provide the means to identifY the conditions under which natural samples were formed and the signatures of subsequent metamorphic events

    NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    Get PDF
    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the Japanese Hyabusa Mission to Itokawa. Also due to their close proximity to Earth, NEOs constitute the most likely set of celestial objects that will impact us in the relatively near future

    Signatures of Chemical Evolution in Protostellar Nebulae

    Get PDF
    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or the Haber-Bosch reactions used in industry, the surface catalyzed reactions seen in our laboratory do not produce a simple product stream of methane or ammonia, respectively. Instead, such reactions produce a wide range of both aliphatic and aromatic hydrocarbons, as well as reduced nitrogen compounds such as ammonia, amines, amides and imides, as gas phase products together with a heavy, macromolecular, kerogen-like surface coating that remains on the grains. While CO and N2 will certainly be depleted by conversion into more complex and less volatile species via reaction on grain surfaces, it may be very difficult to monitor such changes from outside the system
    corecore