1,347 research outputs found
Molecular gas freeze-out in the pre-stellar core L1689B
C17O (J=2-1) observations have been carried out towards the pre-stellar core
L1689B. By comparing the relative strengths of the hyperfine components of this
line, the emission is shown to be optically thin. This allows accurate CO
column densities to be determined and, for reference, this calculation is
described in detail. The hydrogen column densities that these measurements
imply are substantially smaller than those calculated from SCUBA dust emission
data. Furthermore, the C17O column densities are approximately constant across
L1689B whereas the SCUBA column densities are peaked towards the centre. The
most likely explanation is that CO is depleted from the central regions of
L1689B. Simple models of pre-stellar cores with an inner depleted region are
compared with the results. This enables the magnitude of the CO depletion to be
quantified and also allows the spatial extent of the freeze-out to be firmly
established. We estimate that within about 5000 AU of the centre of L1689B,
over 90% of the CO has frozen onto grains. This level of depletion can only be
achieved after a duration that is at least comparable to the free-fall
timescale.Comment: MNRAS letters. 5 pages, 5 figure
Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols
Atmospheric aerosol particle concentrations have been linked with a wide range of pulmonary and cardio-vascular diseases but the particle properties responsible for these negative health effects are largely unknown. It is often speculated that reactive oxygen species (ROS) present in atmospheric particles lead to oxidative stress in, and ultimately disease of, the human lung. The quantification of ROS is highly challenging because some ROS components such as radicals are highly reactive and therefore short-lived. Thus, fast analysis methods are likely advantageous over methods with a long delay between aerosol sampling and ROS analysis. We present for the first time a detailed comparison of conventional off-line and fast on-line methods to quantify ROS in organic aerosols. For this comparison a new and fast on-line instrument was built and characterized to quantify ROS in aerosol particles with high sensitivity and a limit of detection of 4 nmol H2O2 equivalents per m3 air. ROS concentrations are measured with a time resolution of approximately 15 min, which allows the tracking of fast changing atmospheric conditions. The comparison of the off-line and on-line method shows that, in oxidized organic model aerosol particles, the majority of ROS have a very short lifetime of a few minutes whereas a small fraction is stable for a day or longer. This indicates that off-line techniques, where there is often a delay of hours to days between particle collection and ROS analysis, may severely underestimate true ROS concentrations and that fast on-line techniques are necessary for a reliable ROS quantification in atmospheric aerosol particles and a meaningful correlation with health outcomes.This work was supported by the Natural Environment Research Council (NE/H52449X/1), the Velux Stiftung (Project 593) and an ERC starting grant (grant no. 279405).This is the accepted manuscript version. The final published version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1352231014002787
Molecular line contamination in the SCUBA-2 450 {\mu}m and 850 {\mu}m continuum data
Observations of the dust emission using millimetre/submillimetre bolometer
arrays can be contaminated by molecular line flux, such as flux from 12CO. As
the brightest molecular line in the submillimetre, it is important to quantify
the contribution of CO flux to the dust continuum bands. Conversion factors
were used to convert molecular line integrated intensities to flux detected by
bolometer arrays in mJy per beam. These factors were calculated for 12CO line
integrated intensities to the SCUBA-2 850 {\mu}m and 450 {\mu}m bands. The
conversion factors were then applied to HARP 12CO 3-2 maps of NGC 1333 in the
Perseus complex and NGC 2071 and NGC 2024 in the Orion B molecular cloud
complex to quantify the respective 12CO flux contribution to the 850 {\mu}m
dust continuum emission. Sources with high molecular line contamination were
analysed in further detail for molecular outflows and heating by nearby stars
to determine the cause of the 12CO contribution. The majority of sources had a
12CO 3-2 flux contribution under 20 per cent. However, in regions of molecular
outflows, the 12CO can dominate the source dust continuum (up to 79 per cent
contamination) with 12CO fluxes reaching \sim 68 mJy per beam.Comment: Accepted 2012 April 19 for publication in MNRAS. 21 pages, 13
figures, 3 table
The JCMT Gould Belt survey: Dense core clusters in Orion B
The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of OrionB: LDN1622, NGC2023/2024, and NGC2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M–Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage
The JCMT Gould Belt Survey: properties of star-forming filaments in Orion A North
We develop and apply a Hessian-based filament detection algorithm to submillimetre continuum observations of Orion A North. The resultant filament radial density profiles are fitted with beam-convolved line-of-sight Plummer-profiles using Markov chain Monte Carlo techniques. The posterior distribution of the radial decay parameter demonstrates that the majority of filaments exhibit p = 1.5–3, with a mode at p = 2.2, suggesting deviation from the Ostriker p = 4 isothermal, equilibrium, self-gravitating cylinder. The spatial distribution of young stellar objects relative to the high column density filaments is investigated, yielding a lower limit on the star-forming age of the integral-shaped filament ∼1.4 Myr. Additionally, inferred lifetimes of filaments are examined which suggest long-term filament accretion, varying rates of star formation, or both. Theoretical filament stability measures are determined with the aid of HARP C18O J = 3–2 observations and indicate that the majority of filaments are gravitationally subcritical, despite the presence of young protostars. The results from this investigation are consistent with the one-dimensional accretion flow filament model recently observed in numerical simulations
Heterogeneity of Nicotinic Receptor Class and Subunit mRNA Expression among Individual Parasympathetic Neurons from Rat Intracardiac Ganglia
Neurons have the potential to form thousands of distinct neuronal nicotinic receptors from the eight alpha and three beta subunits that currently are known. In an effort to determine how much of this potential complexity is realized among individual neurons, we examined the nicotinic pharmacological and biophysical properties and receptor subunit mRNA expression patterns in individual neurons cultured from rat epicardial ganglia. Analysis of the whole-cell pharmacology of these neurons showed a diversity of responses to the agonists acetylcholine, nicotine, cytisine, and 1,1-dimethyl-4-phenylpiperazinium, suggesting that a heterogeneous population of nicotinic receptor classes, or subtypes, is expressed by individual neurons. Single-channel analysis demonstrated three distinct conductances (18, 24, and 31 pS), with patches from different neurons containing different combinations of these channel classes. We used single-cell RT-PCR to examine nicotinic acetylcholine receptor (nAChR) subunit mRNA expression by individual neurons. Although mRNAs encoding all eight neuronal nAChR subunits for which we probed (alpha 2-alpha 5, alpha 7, beta 2-beta 4) were present in multicellular cultures, we found that individual epicardial neurons express distinct subsets of these nAChR subunit mRNAs. These results suggest that individual epicardial neurons express distinct arrays of nAChR subunits and that these subunits may assemble into functional receptors with distinct and variable subunit composition. This variable receptor subunit expression provides an explanation for the diversity of pharmacological and single-channel responses we have observed in individual neurons
On the fidelity of the core mass functions derived from dust column density data
Aims: We examine the recoverability and completeness limits of the dense core
mass functions (CMFs) derived for a molecular cloud using extinction data and a
core identification scheme based on two-dimensional thresholding.
Methods: We performed simulations where a population of artificial cores was
embedded into the variable background extinction field of the Pipe nebula. We
extracted the cores from the simulated extinction maps, constructed the CMFs,
and compared them to the input CMFs. The simulations were repeated using a
variety of extraction parameters and several core populations with differing
input mass functions and differing degrees of crowding.
Results: The fidelity of the observed CMF depends on the parameters selected
for the core extraction algorithm for our background. More importantly, it
depends on how crowded the core population is. We find that the observed CMF
recovers the true CMF reliably when the mean separation of cores is larger than
their mean diameter (f>1). If this condition holds, the derived CMF is accurate
and complete above M > 0.8-1.5 Msun, depending on the parameters used for the
core extraction. In the simulations, the best fidelity was achieved with the
detection threshold of 1 or 2 times the rms-noise of the extinction data, and
with the contour level spacings of 3 times the rms-noise. Choosing larger
threshold and wider level spacings increases the limiting mass. The simulations
show that when f>1.5, the masses of individual cores are recovered with a
typical uncertainty of 25-30 %. When f=1 the uncertainty is ~60 %. In very
crowded cases where f<1 the core identification algorithm is unable to recover
the masses of the cores adequately. For the cores of the Pipe nebula f~2.0 and
therefore the use of the method in that region is justified.Comment: 9 pages, 6 figures, accepted for publication in A&
Recommended from our members
Genome-wide screening of mouse knockouts reveals novel genes required for normal integumentary and oculocutaneous structure and function.
Oculocutaneous syndromes are often due to mutations in single genes. In some cases, mouse models for these diseases exist in spontaneously occurring mutations, or in mice resulting from forward mutatagenesis screens. Here we present novel genes that may be causative for oculocutaneous disease in humans, discovered as part of a genome-wide screen of knockout-mice in a targeted single-gene deletion project. The International Mouse Phenotyping Consortium (IMPC) database (data release 10.0) was interrogated for all mouse strains with integument abnormalities, which were then cross-referenced individually to identify knockouts with concomitant ocular abnormalities attributed to the same targeted gene deletion. The search yielded 307 knockout strains from unique genes with integument abnormalities, 226 of which have not been previously associated with oculocutaneous conditions. Of the 307 knockout strains with integument abnormalities, 52 were determined to have ocular changes attributed to the targeted deletion, 35 of which represent novel oculocutaneous genes. Some examples of various integument abnormalities are shown, as well as two examples of knockout strains with oculocutaneous phenotypes. Each of the novel genes provided here are potentially relevant to the pathophysiology of human integumentary, or oculocutaneous conditions, such as albinism, phakomatoses, or other multi-system syndromes. The novel genes reported here may implicate molecular pathways relevant to these human diseases and may contribute to the discovery of novel therapeutic targets
Direct evidence of dust growth in L183 from MIR light scattering
Theoretical arguments suggest that dust grains should grow in the dense cold
parts of molecular clouds. Evidence of larger grains has so far been gathered
in near/mid infrared extinction and millimeter observations. Interpreting the
data is, however, aggravated by the complex interplay of density and dust
properties (as well as temperature for thermal emission). We present new
Spitzer data of L183 in bands that are sensitive and insensitive to PAHs. The
visual extinction AV map derived in a former paper was fitted by a series of 3D
Gaussian distributions. For different dust models, we calculate the scattered
MIR radiation images of structures that agree agree with the AV map and compare
them to the Spitzer data. The Spitzer data of L183 show emission in the 3.6 and
4.5 micron bands, while the 5.8 micron band shows slight absorption. The
emission layer of stochastically heated particles should coincide with the
layer of strongest scattering of optical interstellar radiation, which is seen
as an outer surface on I band images different from the emission region seen in
the Spitzer images. Moreover, PAH emission is expected to strongly increase
from 4.5 to 5.8 micron, which is not seen. Hence, we interpret this emission to
be MIR cloudshine. Scattered light modeling when assuming interstellar medium
dust grains without growth does not reproduce flux measurable by Spitzer. In
contrast, models with grains growing with density yield images with a flux and
pattern comparable to the Spitzer images in the bands 3.6, 4.5, and 8.0 micron.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
- …
