513 research outputs found

    Relational Contracting and Allocation of Decision Rights in the Agri-Food Industry: Producer Contracts and Food Safety

    Get PDF
    We apply a formal theoretical model of adaptation to two empirical settings within the agri-food industry: specialized pig production and food safety in Denmark. The objective is to allocate decision rights ex ante so that actual decisions taken ex post will optimize the profit accruing to the two parties in a contractual or integrative relation. Two applications are presented in this paper: First an actual partnership between two pork producers in Denmark. Based on detailed budgets we develop detailed schedules for the “reneging temptations” of the two partners- These are the temptations to renege on the contract during the evolution of the partnership. Using a model developed by Baker, Gibbons and Murphy (2006) we calculate equilibria using the Folk theorem in order to determine which is the best allocation of decision rights. We find that the existing allocation of decision rights in the case we examine is efficient in the sense that it results into a second best allocation. Using the same modelling approach we present a second application on salmonella control related to end-feeding, that is, salmonella contamination of pork due to filled bellies of pigs fed for the last 12 hours before delivery. Based on appropriate assumptions, the parties should give the decision right (whether to end-feed or not) to the slaughterhouse in order to reach the firstbest solution which, given the assumptions, is feasibleTheory of the firm, Adaptation theory, Contracts, Decision Rights, Pig production, Food safety, Agribusiness, Agricultural and Food Policy, Farm Management, Food Consumption/Nutrition/Food Safety, Industrial Organization, D21, L2, Q1,

    Wind Turbine Rotors with Active Vibration Control

    Get PDF

    Qatar Islamic Archaeology and Heritage Project: End of Season Report : 2011-2012

    Get PDF
    International audienc

    A Flexible Privacy-preserving Framework for Singular Value Decomposition under Internet of Things Environment

    Full text link
    The singular value decomposition (SVD) is a widely used matrix factorization tool which underlies plenty of useful applications, e.g. recommendation system, abnormal detection and data compression. Under the environment of emerging Internet of Things (IoT), there would be an increasing demand for data analysis to better human's lives and create new economic growth points. Moreover, due to the large scope of IoT, most of the data analysis work should be done in the network edge, i.e. handled by fog computing. However, the devices which provide fog computing may not be trustable while the data privacy is often the significant concern of the IoT application users. Thus, when performing SVD for data analysis purpose, the privacy of user data should be preserved. Based on the above reasons, in this paper, we propose a privacy-preserving fog computing framework for SVD computation. The security and performance analysis shows the practicability of the proposed framework. Furthermore, since different applications may utilize the result of SVD operation in different ways, three applications with different objectives are introduced to show how the framework could flexibly achieve the purposes of different applications, which indicates the flexibility of the design.Comment: 24 pages, 4 figure

    Bruk av CHADS2 ved behandling av pasienter med atrieflimmer i allmennpraksis

    Get PDF
    Bakgrunn: Atrieflimmer er en vanlig problemstilling i allmennpraksis. En alvorlig komplikasjon til atrieflimmer er hjerneslag. Derfor er antitrombotisk behandling en viktig del av oppfølgingen av disse pasientene. Som slagprofylakse brukes i dag hovedsakelig warfarin eller ASA. For å velge riktig type antitrombotisk behandling står vurdering av hver enkelt pasients slagrisiko sentralt. CHADS2 er en sjekkliste ved behandling av pasienter med atrieflimmer. Kunnskapsgrunnlag: Det er en utfordring for allmennpraktikere å vurdere slagrisiko, og bruk av risikostratifiseringsskjema bidrar til å kvalitetssikre praksis. CHADS2 er det best etablerte skjemaet og er anbefalt av norske helsemyndigheter samt internasjonale hjerteorganisasjoner. Begrunnet tiltak og metode: Undersøkelsen vår viste at det er varierende bruk av CHADS2 i allmennpraksis, til tross for anbefalingene. Vi har satt sammen et forslag til kombinasjon av flere tiltak som vi tror kan bidra til en vellykket implementering. Hovedtiltaket vårt er en powerpointpresentasjon som gir informasjon om hva CHADS2 er, hvordan det brukes og hvorfor dette kan være et nyttig verktøy. Organisering: En av legene i gruppepraksisen utnevnes til prosjektleder og presenterer CHADS2 for de andre legene i et lunsjmøte eller lignende. En representant for praksisen må få ansvaret for en før- og etterregistrering med tanke på valg av tromboseprofylakse i forhold til risikogruppe, og å kunne fange opp om en endring i praksis vil ha gunstig effekt. Resultater/vurdering: Vi har gjort litteratursøk, kartlegging i allmennpraksis og spesialisthelsetjeneste samt gjort en vurdering av fordeler og ulemper ved tiltaket. På bakgrunn av dette konkluderer vi med at en innføring av CHADS2 i allmennpraksis er faglig godt begrunnet og praktisk gjennomførbart

    Logical limit laws for minor-closed classes of graphs

    Get PDF
    Let G\mathcal G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {\em connected} graphs in G\mathcal G on nn vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G\mathcal G on nn vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface SS. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length 5106\approx 5\cdot 10^{-6}. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on nn vertices, even in FO.Comment: minor changes; accepted for publication by JCT
    corecore