1,091 research outputs found
Resonance in Magnetostatically Coupled Transverse Domain Walls
This is the author accepted manuscript. The final version is available from American Physical Society via the DOI in this record.We have observed the eigenmodes of coupled transverse domain walls in a pair of ferromagnetic nanowires. Although the pair is coupled magnetostatically, its spectrum is determined by a combination of pinning by edge roughness and dipolar coupling of the two walls. Because the corresponding energy scales are comparable, the coupling can be observed only at the smallest wire separations. A model of the coupled wall dynamics reproduces the experiment quantitatively, allowing for comparisons with the estimated pinning and domain wall coupling energies. The results have significant implications for the dynamics of devices based on coupled domain walls.This work was supported in part by the NSF MRSEC program under Grant No. DMR-0804244 and the NSF/NRI NEB program under Grant No. ECCS-1124831, as well as the EU Marie Curie IOF Project No. 299376 and the European Community Seventh Framework Programme Contract No. 247368: 3SPIN. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program
Time-resolved Kerr microscopy of coupled transverse domain walls in a pair of curved nanowires
This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.Time-resolved scanning Kerr microscopy has been used to directly observe magnetostatically coupled transverse domain walls (TDWs) in a pair of closely spaced, curved nanowires (NWs). Kerr images of the precessional response of the magnetic domain to either side of the TDW revealed the TDW as a minimum in the Kerr signal in the region of closest NW separation. When the TDWs were ejected from the NW pair, the minimum in the Kerr signal was no longer observed. By imaging this transition, the static de-coupling field was estimated to be in the range from 38 to 48 Oe in good agreement with a simple micromagnetic model. This work provides a novel technique by which DC and microwave assisted decoupling fields of TDWs may be explored in NW pairs of different width, separation, and curvature.This work was supported by the EU Grant Master No. NMP-FP7-212257, the UK EPSRC Grant Ref. EP/I038470/1, and partially supported by the EU FP7 Project 3SPIN No. 247368, and the Marie Curie IOF Project No. 299376
Experimental realisation of Shor's quantum factoring algorithm using qubit recycling
Quantum computational algorithms exploit quantum mechanics to solve problems
exponentially faster than the best classical algorithms. Shor's quantum
algorithm for fast number factoring is a key example and the prime motivator in
the international effort to realise a quantum computer. However, due to the
substantial resource requirement, to date, there have been only four
small-scale demonstrations. Here we address this resource demand and
demonstrate a scalable version of Shor's algorithm in which the n qubit control
register is replaced by a single qubit that is recycled n times: the total
number of qubits is one third of that required in the standard protocol.
Encoding the work register in higher-dimensional states, we implement a
two-photon compiled algorithm to factor N=21. The algorithmic output is
distinguishable from noise, in contrast to previous demonstrations. These
results point to larger-scale implementations of Shor's algorithm by harnessing
scalable resource reductions applicable to all physical architectures.Comment: 7 pages, 3 figure
Adding control to arbitrary unknown quantum operations
While quantum computers promise significant advantages, the complexity of
quantum algorithms remains a major technological obstacle. We have developed
and demonstrated an architecture-independent technique that simplifies adding
control qubits to arbitrary quantum operations-a requirement in many quantum
algorithms, simulations and metrology. The technique is independent of how the
operation is done, does not require knowledge of what the operation is, and
largely separates the problems of how to implement a quantum operation in the
laboratory and how to add a control. We demonstrate an entanglement-based
version in a photonic system, realizing a range of different two-qubit gates
with high fidelity.Comment: 9 pages, 8 figure
On the experimental verification of quantum complexity in linear optics
The first quantum technologies to solve computational problems that are
beyond the capabilities of classical computers are likely to be devices that
exploit characteristics inherent to a particular physical system, to tackle a
bespoke problem suited to those characteristics. Evidence implies that the
detection of ensembles of photons, which have propagated through a linear
optical circuit, is equivalent to sampling from a probability distribution that
is intractable to classical simulation. However, it is probable that the
complexity of this type of sampling problem means that its solution is
classically unverifiable within a feasible number of trials, and the task of
establishing correct operation becomes one of gathering sufficiently convincing
circumstantial evidence. Here, we develop scalable methods to experimentally
establish correct operation for this class of sampling algorithm, which we
implement with two different types of optical circuits for 3, 4, and 5 photons,
on Hilbert spaces of up to 50,000 dimensions. With only a small number of
trials, we establish a confidence >99% that we are not sampling from a uniform
distribution or a classical distribution, and we demonstrate a unitary specific
witness that functions robustly for small amounts of data. Like the algorithmic
operations they endorse, our methods exploit the characteristics native to the
quantum system in question. Here we observe and make an application of a
"bosonic clouding" phenomenon, interesting in its own right, where photons are
found in local groups of modes superposed across two locations. Our broad
approach is likely to be practical for all architectures for quantum
technologies where formal verification methods for quantum algorithms are
either intractable or unknown.Comment: Comments welcom
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Dietary Supplementation with Soluble Plantain Non-Starch Polysaccharides Inhibits Intestinal Invasion of Salmonella Typhimurium in the Chicken
Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1–99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5–10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64–81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75–90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Climate and southern Africa's water-energy-food nexus
In southern Africa, the connections between climate and the water-energy-food nexus are strong. Physical and socioeconomic exposure to climate is high in many areas and in crucial economic sectors. Spatial interdependence is also high, driven for example, by the regional extent of many climate anomalies and river basins and aquifers that span national boundaries. There is now strong evidence of the effects of individual climate anomalies, but associations between national rainfall and Gross Domestic Product and crop production remain relatively weak. The majority of climate models project decreases in annual precipitation for southern Africa, typically by as much as 20% by the 2080s. Impact models suggest these changes would propagate into reduced water availability and crop yields. Recognition of spatial and sectoral interdependencies should inform policies, institutions and investments for enhancing water, energy and food security. Three key political and economic instruments could be strengthened for this purpose; the Southern African Development Community, the Southern African Power Pool, and trade of agricultural products amounting to significant transfers of embedded water
- …
