2,021 research outputs found
Continuous Transition between Antiferromagnetic Insulator and Paramagnetic Metal in the Pyrochlore Iridate Eu2Ir2O7
Our single crystal study of the magneto-thermal and transport properties of
the pyrochlore iridate Eu2Ir2O7 reveals a continuous phase transition from a
paramagnetic metal to an antiferromagnetic insulator for a sample with
stoichiometry within ~1% resolution. The insulating phase has strong proximity
to an antiferromagnetic semimetal, which is stabilized by several % level of
the off-stoichiometry. Our observations suggest that in addition to electronic
correlation and spin-orbit coupling the magnetic order is essential for opening
the charge gap.Comment: 6 pages, 6 figure
Reversible skew laurent polynomial rings and deformations of poisson automorphisms
A skew Laurent polynomial ring S = R[x(+/- 1); alpha] is reversible if it has a reversing automorphism, that is, an automorphism theta of period 2 that transposes x and x(-1) and restricts to an automorphism gamma of R with gamma = gamma(-1). We study invariants for reversing automorphisms and apply our methods to determine the rings of invariants of reversing automorphisms of the two most familiar examples of simple skew Laurent polynomial rings, namely a localization of the enveloping algebra of the two-dimensional non-abelian solvable Lie algebra and the coordinate ring of the quantum torus, both of which are deformations of Poisson algebras over the base field F. Their reversing automorphisms are deformations of Poisson automorphisms of those Poisson algebras. In each case, the ring of invariants of the Poisson automorphism is the coordinate ring B of a surface in F-3 and the ring of invariants S-theta of the reversing automorphism is a deformation of B and is a factor of a deformation of F[x(1), x(2), x(3)] for a Poisson bracket determined by the appropriate surface
Μέτρα ασφαλείας κατά τη διαδικασία προσέγγισης,φορτοεκφότωσης και αναχώρησης πλοίων μεταφοράς καυσίμων υδρογονανθράκων
Le Lagadec, MD ORCiD: 0000-0003-0114-8552'Abnormal vertical growth' (AVG) was recognised in Australia as a dysfunction of macadamia (Macadamia spp.) in the mid-1990s. Affected trees displayed unusually erect branching, and poor flowering and yield. Since 2002, the commercial significance of AVG, its cause, and strategies to alleviate its affects, has been studied. The cause is still unknown, and AVG remains a serious threat to orchard viability. AVG affects both commercial and urban macadamia. It occurs predominantly in the warmer-drier production regions of Queensland and New South Wales. An estimated 100,000 orchard trees are affected, equating to an annual loss of $ 10.5 M. In orchards, AVG occurs as aggregations of affected trees, affected tree number can increase by 4.5% per year, and yield reduction can exceed 30%. The more upright cultivars 'HAES 344' and '741' are highly susceptible, while the more spreading cultivars 'A4', 'A16' and 'A268' show tolerance. Incidence is higher (p<0.05) in soils of high permeability and good drainage. No soil chemical anomaly has been found. Fine root dry weight of AVG trees (0-15 cm depth) was found lower (p<0.05) than non-AVG. Next generation sequencing has led to the discovery of a new Bacillus sp. and a bipartite Geminivirus, which may have a role in the disease. Trunk cinctures will increase (p<0.05) yield of moderately affected trees. Further research is needed to clarify whether a pathogen is the cause, the role of soil moisture in AVG, and develop a varietal solution
Scaling of Majorana Zero-Bias Conductance Peaks
We report an experimental study of the scaling of zero-bias conductance peaks
compatible with Majorana zero modes as a function of magnetic field, tunnel
coupling, and temperature in one-dimensional structures fabricated from an
epitaxial semiconductor-superconductor heterostructure. Results are consistent
with theory, including a peak conductance that is proportional to tunnel
coupling, saturates at , decreases as expected with field-dependent
gap, and collapses onto a simple scaling function in the dimensionless ratio of
temperature and tunnel coupling.Comment: Accepted in Physical Review Letter
Rashba interaction and local magnetic moments in a graphene-Boron Nitride heterostructure by intercalation with Au
We intercalate a van der Waals heterostructure of graphene and hexagonal
Boron Nitride with Au, by encapsulation, and show that Au at the interface is
two dimensional. A charge transfer upon current annealing indicates
redistribution of Au and induces splitting of the graphene bandstructure. The
effect of in plane magnetic field confirms that splitting is due to
spin-splitting and that spin polarization is in the plane, characteristic of a
Rashba interaction with magnitude approximately 25 meV. Consistent with the
presence of intrinsic interfacial electric field we show that the splitting can
be enhanced by an applied displacement field in dual gated samples. Giant
negative magnetoresistance, up to 75%, and a field induced anomalous Hall
effect at magnetic fields < 1 T are observed. These demonstrate that hybridized
Au has a magnetic moment and suggests the proximity to formation of a
collective magnetic phase. These effects persist close to room temperature
Photon Assisted Tunneling of Zero Modes in a Majorana Wire
Hybrid nanowires with proximity-induced superconductivity in the topological
regime host Majorana zero modes (MZMs) at their ends, and networks of such
structures can produce topologically protected qubits. In a double-island
geometry where each segment hosts a pair of MZMs, inter-pair coupling mixes the
charge parity of the islands and opens an energy gap between the even and odd
charge states at the inter-island charge degeneracy. Here, we report on the
spectroscopic measurement of such an energy gap in an InAs/Al double-island
device by tracking the position of the microwave-induced quasiparticle (qp)
transitions using a radio-frequency (rf) charge sensor. In zero magnetic field,
photon assisted tunneling (PAT) of Cooper pairs gives rise to resonant lines in
the 2e-2e periodic charge stability diagram. In the presence of a magnetic
field aligned along the nanowire, resonance lines are observed parallel to the
inter-island charge degeneracy of the 1e-1e periodic charge stability diagram,
where the 1e periodicity results from a zero-energy sub-gap state that emerges
in magnetic field. Resonant lines in the charge stability diagram indicate
coherent photon assisted tunneling of single-electron states, changing the
parity of the two islands. The dependence of resonant frequency on detuning
indicates a sizable (GHz-scale) hybridization of zero modes across the junction
separating islands
Hybridization of sub-gap states in one-dimensional superconductor/semiconductor Coulomb islands
We present measurements of one-dimensional superconductor-semiconductor
Coulomb islands, fabricated by gate confinement of a two-dimensional InAs
heterostructure with an epitaxial Al layer. When tuned via electrostatic side
gates to regimes without sub-gap states, Coulomb blockade reveals Cooper-pair
mediated transport. When sub-gap states are present, Coulomb peak positions and
heights oscillate in a correlated way with magnetic field and gate voltage, as
predicted theoretically, with (anti) crossings in (parallel) transverse
magnetic field indicating Rashba-type spin-orbit coupling. Overall results are
consistent with a picture of overlapping Majorana zero modes in finite wires
- …
