505 research outputs found
Measurement and Model Validation of Nanofluid Specific Heat Capacity with Differential Scanning Calorimetry
Nanofluids are being considered for heat transfer applications; therefore it is important to know their thermophysical properties accurately. In this paper we focused on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry (DSC), a robust experimental methodology for measuring the heat capacity of fluids, the specific heat capacities of water-based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5 wt% and 50 wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviated very significantly from the data. Therefore, Model II is recommended for nanofluids
Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles
Nanofluids are being considered for heat transfer applications. However, their thermo-physical properties are poorly known. Here we focus on nanofluid specific heat capacity. Currently, there exist two models to predict a nanofluid’s specific heat capacity as a function of nanoparticle concentration and material. Model I is a straight volume-weighted average; Model II is based on the assumption of thermal equilibrium between the particles and the surrounding fluid. These two models give significantly different predictions for a given system. Using differential scanning calorimetry, the specific heat capacities of water based silica, alumina, and copper oxide nanofluids were measured. Nanoparticle concentrations were varied between 5wt% and 50wt%. Test results were found to be in excellent agreement with Model II, while the predictions of Model I deviate very significantly from the data
Effects of Hydrophobic Surface Patterning on Boiling Heat Transfer and Critical Heat Flux of Water at Atmospheric Pressure
The effects of hydrophilic/hydrophobic surface patterning on critical heat flux (CHF) and heat transfer coefficient (HTC) were studied using custom-engineered testing surfaces. Patterning was created over a sapphire substrate and tested in a pool boiling facility in MITs Reactor Hydraulics Laboratory. The hydrophilic and hydrophobic matrices were created using layer by layer deposition of 50 nm thick SiO2 nanoparticles and monolayer thickness fluorosilane, respectively. Ultraviolet ozone patterning was then used with chrome-printed masks to create the desired geometric features. Hexagon, ring, star, and mixed patterns were tested to determine their abilities to affect CHF and HTC through prevention of bubble pinning at high heat fluxes. During testing, an infrared camera was used to measure the surface temperature distribution as well as locate nucleation sites for data analysis. It was found that CHF values were enhanced over the bare sapphire values by approximately 90% for hexagons, 60% for stars, 65% for rings, and 50% for mixed patterns. Contrary to expectations, patterning did not seem to affect the HTC values significantly. Although patterning did improve CHF performance over bare heaters, both CHF and HTC were found to be statistically similar to those for unpatterned, uniformly hydrophilic surfaces. Copyright © 2013 by ASME
Five-Year Longitudinal Assessment (2008 to 2012) of E-101 Solution Activity against Clinical Target and Antimicrobial-Resistant Pathogens
This study summarizes the topical E-101 solution susceptibility testing results for 760 Gram-positive and Gram-negative target pathogens collected from 75 U.S. sites between 2008 and 2012 and 103 ESKAPE pathogens. E-101 solution maintained potent activity against all bacterial species studied for each year tested, with MICs ranging from <0.008 to 0.25 μg porcine myeloperoxidase (pMPO)/ml. These results confirm that E-101 solution retains its potent broad-spectrum activity against U.S. clinical isolates and organisms with challenging resistance phenotypes
Stakeholder-Driven Design Evolution of the Leveraged Freedom Chair Developing World Wheelchair
The Leveraged Freedom Chair (LFC) is a low-cost, all-terrain, variable mechanical advantage, lever-propelled wheelchair designed for use in developing countries. The user effectively changes gear by shifting his hands along the levers; grasping near the ends increases torque delivered to the drive-train, while grasping near the pivots enables a larger angular displacement with every stroke, which increases angular velocity in the drivetrain and makes the chair go faster. This paper chronicles the design evolution of the LFC through three user trials in East Africa, Guatemala, and India. Feedback from test subjects was used to refine the chair between trials, resulting in a device 9.1 kg (20 lbs) lighter, 8.9 cm (3.5 in) narrower, and with a center of gravity 12.7 cm (5 in) lower than the first iteration. Survey data substantiated increases in performance after successive iterations. Quantitative biomechanical performance data were also measured during the Guatemala and India trials, which showed the LFC to be 76 percent faster and 41 percent more efficient during a common daily commute and able to produce 51 percent higher peak propulsion force compared to conventional, pushrim-propelled wheelchairs
Benefits Transfer and the Aquatic Environment: An Investigation into the Context of Fish Passage Improvement
We present findings from a choice experiment investigating improvements in the aquatic environment from mitigation of barriers to fish passage. Implemented at a local and national level, results reveal positive preferences for increased numbers of fish species as well as fish abundance. In addition, we examine if in this case the willingness to pay estimates are suitable for direct transfer between national and local settings. For both samples, we consider the extent to which stated attribute non-attendance impacts estimates of willingness to pay and the potential ability of researchers to transfer values between contexts. Implications of the use of benefit transfer within this policy context are discussed in light of our findings
The Importance of Spatiotemporal Fish Population Dynamics in Barrier Mitigation Planning
In this study, we propose a novel framework combining spatially explicit population viability analysis and optimization for prioritizing fish passage barrier mitigation decisions. Our model aims to maximize the equilibrium population size, or alternatively minimize the extinction risk, of a target fish species
subject to a budget on the total cost of barrier mitigation. A case study involving a wild coho salmon (Oncorhynchus kisutch) population from the Tillamook basin, Oregon, USA is used to illustrate the benefits of our approach. We consider two different spawning adult dispersal patterns, river and reach level homing, as well as straying. Under density dependent population growth, we find that homing behavior type has a significant effect on barrier mitigation decisions. In particular, with reach homing, our model produces virtually the same population sizes as a more traditional barrier prioritization procedure designed to maximize accessible habitat. With river homing, however, we find that it is not necessary to remove all barriers in order to maximize equilibrium population size. Indeed, a stochastic version of our model reveals that removing all barriers actually results in a marginal increase in quasi-extinction risk. We hypothesize that this is due to a population thinning effect of barriers, resulting in a surplus of recruits in areas of low spawner density. Our findings highlights the importance of considering spatiotemporal fish population dynamics in river connectivity restoration planning. By adding greater biological realism, models such as ours can help conservation managers to more strategically allocate limited resources, resulting in both cost savings and improved population status for a focal species
Safety, Immunogenicity, and Transmissibility of Single-Dose Live Oral Cholera Vaccine Strain CVD l03-HgR in 24- to 59-Month-Old Indonesian Children
Recombinant A-B+ Vibrio cholerae O1 strain CVD 103-HgR is a safe, highly immunogenic, single-dose live oral vaccine in adults in industrialized countries, Safety, excretion, immunogenicity, vaccine transmissibility, and environmental introduction ofCVD 103-HgR were investigated among 24- to 59-month-old children in Jakarta. In 81 households, 1 child was randomly allocated a single dose of vaccine (5 x 109 cfu) and another, placebo. Additionally, 139 unpaired children were randomly allocated vaccine or placebo. During 9 days of follow-up, diarrhea or vomiting did not occur more often among vaccinees than controls. Vaccine was minimally excreted and was isolated from no controls and from 1 (0.6%) of 177 unvaccinated family contacts. A 4-fold or higher rise in serum vibriocidal antibody was observed in 75% of vaccinees (10-fold rise in geometric mean titer over baseline). Of 135 paired placebo recipients or household contacts, 5 had vibriocidal seroconversions. Moore swabs placed in sewers and latrines near 97 households failed to detect vaccine. These observations pave the way for a large-scale field trial of efficac
How to Choose? A Bioeconomic Model for Optimizing River Barrier Mitigation Actions
River infrastructure can cause adverse impacts on fish populations, which, in turn, compromises the ability of river ecosystems to provide a range of ecosystem services. In this paper, we present a methodological approach to assess the potential economics costs and benefits of river connectivity enhancement achieved through removal and mitigation of fish dispersal barriers. Our approach combines the results of a stated preference study for nonuse values of rivers and statistical models of fish population responses to barrier mitigation actions within an integrated bioeconomic optimization framework. We demonstrate the utility of our methodology using a case study of the River Wey catchment in southeast England, which contains over 650 artificial barriers. Our results reveal the presence of benefit-cost trade-offs which can form the basis for river barrier mitigation policy development. In particular, we find that benefits exceed costs in the River Wey for all levels of investment in barrier mitigation considered (£2.5 to 53.4M). Furthermore, from an economic efficiency standpoint, a total budget of approximately £22.5M allocated to barrier mitigation would maximize net societal benefits derived from anticipated increases fish species richness and abundance
Engaging Stakeholders To Extend The Lifecycle Of Hybrid Simulation Models
Developing a simulation model of a complex system requires a significant investment of time, expertise and expense. In order to realize the greatest return on such an investment, it is desirable to extend the lifecycle of the simulation model as much as possible. Existing studies typically end after the `first loop' of the lifecycle, with the computer model suitable for addressing the initial requirements of the stakeholders. We explore extending the modeling lifecycle to a `second loop' by introducing an existing hybrid simulation model to a new group of stakeholders and further developing it to capture new requirements. With the aid of an example application, we explain how the hybrid model facilitated stakeholder engagement by closely reflecting the real world and how the model lifecycle has been successfully extended to maximize the benefit to Eurostar International Limited
- …
