329 research outputs found
Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.
The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Recommended from our members
Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics
In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition
of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term ‘prebiotic’ by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation
Endogenous endophthalmitis caused by Pseudomonas aeruginosa in a preterm infant: a case report
Endophthalmitis is an infection of the vitreous or aqueous humor of the eye. Although it rarely occurs in the neonatal period it has been previously diagnosed in preterm infants
Bi-allelic variants in DAP3 result in reduced assembly of the mitoribosomal small subunit with altered apoptosis and a Perrault-syndrome-spectrum phenotype
\ua9 2024 The Author(s)The mitochondrial ribosome (mitoribosome) synthesizes 13 protein subunits of the oxidative phosphorylation system encoded by the mitochondrial genome. The mitoribosome is composed of 12S rRNA, 16S rRNA, and 82 mitoribosomal proteins encoded by nuclear genes. To date, variants in 12 genes encoding mitoribosomal proteins are associated with rare monogenic disorders and frequently show combined oxidative phosphorylation deficiency. Here, we describe five unrelated individuals with bi-allelic variants in death-associated protein 3 (DAP3), a nuclear gene encoding mitoribosomal small subunit 29 (MRPS29), with variable clinical presentations ranging from Perrault syndrome (sensorineural hearing loss and ovarian insufficiency) to an early childhood neurometabolic phenotype. Assessment of respiratory-chain function and proteomic profiling of fibroblasts from affected individuals demonstrated reduced MRPS29 protein amounts and, consequently, decreased levels of additional protein components of the mitoribosomal small subunit, as well as an associated combined deficiency of complexes I and IV. Lentiviral transduction of fibroblasts from affected individuals with wild-type DAP3 cDNA increased DAP3 mRNA expression and partially rescued protein levels of MRPS7, MRPS9, and complex I and IV subunits, demonstrating the pathogenicity of the DAP3 variants. Protein modeling suggested that DAP3 disease-associated missense variants can impact ADP binding, and in vitro assays demonstrated that DAP3 variants can consequently reduce both intrinsic and extrinsic apoptotic sensitivity, DAP3 thermal stability, and DAP3 GTPase activity. Our study presents genetic and functional evidence that bi-allelic variants in DAP3 result in a multisystem disorder of combined oxidative phosphorylation deficiency with pleiotropic presentations, consistent with mitochondrial dysfunction
DNA replication and the GINS complex: localization on extended chromatin fibers
<p>Abstract</p> <p>Background</p> <p>The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this complex. Here, we show the organization of GINS complexes on extended chromatin fibers in relation to sites of DNA replication and replication-associated proteins.</p> <p>Results</p> <p>Using immunofluorescence microscopy we were able to visualize ORC1, ORC2, PCNA, and GINS complex proteins Psf1 and Psf2 bound to extended chromatin fibers. We were also able to detect these proteins concurrently with the visualization of tracks of recently replicated DNA where EdU, a thymidine analog, was incorporated. This allowed us to assess the chromatin association of proteins of interest in relation to the process of DNA replication. ORC and GINS proteins were found on chromatin fibers before replication could be detected. These proteins were also associated with newly replicated DNA in bead-like structures. Additionally, GINS proteins co-localized with PCNA at sites of active replication.</p> <p>Conclusion</p> <p>In agreement with its proposed role in the initiation of DNA replication, GINS proteins associated with chromatin near sites of ORC binding that were devoid of EdU (absence of DNA replication). The association of GINS proteins with PCNA was consistent with a role in the process of elongation. Additionally, the large size of our chromatin fibers (up to approximately 7 Mb) allowed for a more expansive analysis of the distance between active replicons than previously reported.</p
Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics
HIV-1 Neutralization Profile and Plant-Based Recombinant Expression of Actinohivin, an Env Glycan-Specific Lectin Devoid of T-Cell Mitogenic Activity
The development of a topical microbicide blocking the sexual transmission of HIV-1 is urgently needed to control the global HIV/AIDS pandemic. The actinomycete-derived lectin actinohivin (AH) is highly specific to a cluster of high-mannose-type glycans uniquely found on the viral envelope (Env). Here, we evaluated AH's candidacy toward a microbicide in terms of in vitro anti-HIV-1 activity, potential side effects, and recombinant producibility. Two validated assay systems based on human peripheral blood mononuclear cell (hPBMC) infection with primary isolates and TZM-bl cell infection with Env-pseudotyped viruses were employed to characterize AH's anti-HIV-1 activity. In hPMBCs, AH exhibited nanomolar neutralizing activity against primary viruses with diverse cellular tropisms, but did not cause mitogenicity or cytotoxicity that are often associated with other anti-HIV lectins. In the TZM-bl-based assay, AH showed broad anti-HIV-1 activity against clinically-relevant, mucosally transmitting strains of clades B and C. By contrast, clade A viruses showed strong resistance to AH. Correlation analysis suggested that HIV-1′s AH susceptibility is significantly linked to the N-glycans at the Env C2 and V4 regions. For recombinant (r)AH expression, we evaluated a tobacco mosaic virus-based system in Nicotiana benthamiana plants as a means to facilitate molecular engineering and cost-effective mass production. Biochemical analysis and an Env-mediated syncytium formation assay demonstrated high-level expression of functional rAH within six days. Taken together, our study revealed AH's cross-clade anti-HIV-1 activity, apparent lack of side effects common to lectins, and robust producibility using plant biotechnology. These findings justify further efforts to develop rAH toward a candidate HIV-1 microbicide
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code
Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease
In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice
- …
