4,410 research outputs found

    Models of Consensus for Multiple Agent Systems

    Full text link
    Models of consensus are used to manage multiple agent systems in order to choose between different recommendations provided by the system. It is assumed that there is a central agent that solicits recommendations or plans from other agents. That agent the n determines the consensus of the other agents, and chooses the resultant consensus recommendation or plan. Voting schemes such as this have been used in a variety of domains, including air traffic control. This paper uses an analytic model to study the use of consensus in multiple agent systems. The binomial model is used to study the probability that the consensus judgment is correct or incorrect. That basic model is extended to account for both different levels of agent competence and unequal prior odds. The analysis of that model is critical in the investigation of multiple agent systems, since the model leads us to conclude that in some cases consensus judgment is not appropriate. In addition, the results allow us to determine how many agents should be used to develop consensus decisions, which agents should be used to develop consensus decisions and under which conditions the consensus model should be used.Comment: Appears in Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI1994

    Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars

    Get PDF
    Several extensions of the Standard Model of particle physics contain additional scalars implying a more complex scalar potential compared to that of the Standard Model. In general these potentials allow for charge and/or color breaking minima besides the desired one with correctly broken SU(2)_L times U(1)_Y . Even if one assumes that a metastable local minimum is realized, one has to ensure that its lifetime exceeds that of our universe. We introduce a new program called Vevacious which takes a generic expression for a one-loop effective potential energy function and finds all the tree-level extrema, which are then used as the starting points for gradient-based minimization of the one-loop effective potential. The tunneling time from a given input vacuum to the deepest minimum, if different from the input vacuum, can be calculated. The parameter points are given as files in the SLHA format (though is not restricted to supersymmetric models), and new model files can be easily generated automatically by the Mathematica package SARAH. This code uses HOM4PS2 to find all the minima of the tree-level potential, PyMinuit to follow gradients to the minima of the one-loop potential, and CosmoTransitions to calculate tunneling times.Comment: 44 pages, 1 figure, manual for publicly available software, v2 corresponds to version accepted for publication in EPJC [clearer explanation of scale dependence and region of validity, explicit mention that SLHA files should have blocks matching those expected by model files, updated references

    Validity of the CMSSM interpretation of the diphoton excess

    Get PDF
    It has been proposed that the observed diphoton excess at 750 GeV could be explained within the constrained minimal supersymmetric standard model via resonantly produced stop bound states. We reanalyze this scenario critically and extend previous work to include the constraints from the stability of the electroweak vacuum and from the decays of the stoponium into a pair of Higgs bosons. It is shown that the interesting regions of parameter space with a light stop and Higgs of the desired mass are ruled out by these constraints. This conclusion is not affected by the presence of the bound states because the binding energy is usually very small in the regions of parameter space which can explain the Higgs mass. Thus, this also leads to strong constraints on the diphoton production cross section which is in general too small.Comment: 8 pages, 5 figures; v2: added Fig. 5, matches published versio

    Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents

    Get PDF
    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discusse

    Implications of gauge kinetic mixing on Z' and slepton production at the LHC

    Full text link
    We consider a supersymmetric version of the standard model extended by an additional U(1)_{B-L}. This model can be embedded in an mSUGRA-inspired model where the mass parameters of the scalars and gauginos unify at the scale of grand unification. In this class of models the renormalization group equation evolution of gauge couplings as well as of the soft SUSY-breaking parameters require the proper treatment of gauge kinetic mixing. We first show that this has a profound impact on the phenomenolgy of the Z' and as a consequence the current LHC bounds on its mass are reduced significantly from about 1920 GeV to 1725 GeV. They are even further reduced if the Z' can decay into supersymmetric particles. Secondly, we show that in this way sleptons can be produced at the LHC in the 14 TeV phase with masses of several hundred GeV. In the case of squark and gluino masses in the multi-TeV range, this might become an important discovery channel for sleptons up to 650 GeV (800 GeV) for an integrated luminosity of 100 fb^{-1} (300 fb^{-1}).Comment: 34 pages, 14 figures. v2: Significance equation corrected, results qualitatively unchanged; minor changes in quantitative Z' bound

    Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s.

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) and type 2 helper T cells (Th2 cells) are the primary source of interleukin 5 (IL-5) and IL-13 during type 2 (allergic) inflammation in the lung. In Th2 cells, T cell receptor (TCR) signaling activates the transcription factors nuclear factor of activated T cells (NFAT), nuclear factor κB (NF-κB), and activator protein 1 (AP-1) to induce type 2 cytokines. ILC2s lack a TCR and respond instead to locally produced cytokines such as IL-33. Although IL-33 induces AP-1 and NF-κB, NFAT signaling has not been described in ILC2s. In this study, we report a nonredundant NFAT-dependent role for lipid-derived leukotrienes (LTs) in the activation of lung ILC2s. Using cytokine reporter and LT-deficient mice, we find that complete disruption of LT signaling markedly diminishes ILC2 activation and downstream responses during type 2 inflammation. Type 2 responses are equivalently attenuated in IL-33- and LT-deficient mice, and optimal ILC2 activation reflects potent synergy between these pathways. These findings expand our understanding of ILC2 regulation and may have important implications for the treatment of airways disease

    Stability of R parity in supersymmetric models extended by U(1)_{B-L}

    Full text link
    We perform a study of the stability of R-parity-conserving vacua of a constrained version of the minimal supersymmetric model with a gauged U(1)_{B-L} which can conserve R-parity, using homotopy continuation to find all the extrema of the tree-level potential, for which we also calculated the one-loop corrections. While we find that a majority of the points in the parameter space preserve R-parity, we find that a significant portion of points which naively have phenomenologically acceptable vacua which conserve R-parity actually have deeper vacua which break R-parity through sneutrino VEVs. We investigate under what conditions the deeper R-parity-violating vacua appear. We find that while previous exploratory work was broadly correct in some of its qualitative conclusions, we disagree in detail.Comment: 22 pages, 4 figures (32 sub-figures
    corecore