2,294 research outputs found
Influence of leptin on arterial distensibility - A novel link between obesity and cardiovascular disease?
Background-The mechanisms by which obesity increases the risk of atherosclerotic cardiovascular disease (CVD) are poorly understood. In experimental models, leptin, a hormone produced by adipose tissue, has been shown adversely to affect vascular health. Therefore, we tested the hypothesis that high leptin concentrations are associated with lower arterial distensibility, an index of circulatory function relevant to the atherosclerotic process.Methods and Results-Noninvasive, high-resolution, vascular ultrasound was used to measure brachial artery distensibility in 294 healthy adolescents (aged 13 to 16 years) who had a broad range of body mass indexes. Fat mass was measured by bioelectric impedance analysis; fasting serum leptin concentration by radioimmunoassay; and lipid profile, fasting insulin, glucose, and C-reactive protein concentrations by standard laboratory techniques. Higher leptin concentrations were associated with impaired arterial distensibility (regression coefficient, -1.3% change in arterial distension per 10% increase in leptin; 95% CI, -1.9% to -0.8%; P<0.001). This association was independent of fat mass, blood pressure, and C-reactive protein, fasting insulin, or LDL cholesterol concentrations.Conclusions-Elevation in leptin was associated with impaired vascular function, independent of the metabolic and inflammatory disturbances associated with obesity. Our observations are consistent with data from experimental models and suggest that high leptin concentration is an important mechanism for the adverse influence of body fatness on CVD
Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis
This work was supported by a Merit Scholarship from the Islamic Development Bank (to M.M.U.T.), The Agency for Science, Technology and Research, Singapore (A*STAR) (M.F.M.S), the Medical Research Council (MRC) [NIRG GO800203 and Research Grant MR/L002620/1 (to J.J.R.), Program GrantG09000554 (to S.O.R)], The Wellcome Trust [078986/Z/06/Z (to S.O.R.)], the MRC Centre for Obesity and Related Metabolic Disorders (MRC-CORD) [GO600717] and the NIHR Comprehensive Biomedical Research Centre [CG50826].Peer reviewedPublisher PD
Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms
Peer reviewedPublisher PD
Analysis of Parametric Oscillatory Instability in Power Recycled LIGO Interferometer
We present the analysis of a nonlinear effect of parametric oscillatory
instability in power recycled LIGO interferometer with the Fabry-Perot (FP)
cavities in the arms. The basis for this effect is the excitation of the
additional (Stokes) optical mode and the mirror elastic mode, when the optical
energy stored in the main FP cavity main mode exceeds the certain threshold and
the frequencies are related so that sum of frequencies of Stokes and elastic
modes are approximately equal to frequencyof main mode. The presence of
anti-Stokes modes (with frequency approximately equal to sum of frequencies of
main and elastic modes) can depress parametric instability. However, it is very
likely that the anti-Stokes modes will not compensate the parametric
instability completely.Comment: 9 pages, 2 figures. submitted to Physics Letters
Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm.
SNPs (single nucleotide polymorphisms) on a chromosome 16 locus encompassing FTO, as well as IRX3, 5, 6, FTM and FTL are robustly associated with human obesity. FTO catalyses the Fe(II)- and 2OG-dependent demethylation of RNA and is an AA (amino acid) sensor that couples AA levels to mTORC1 (mammalian target of rapamycin complex 1) signalling, thereby playing a key role in regulating growth and translation. However, the cellular compartment in which FTO primarily resides to perform its biochemical role is unclear. Here, we undertake live cell imaging of GFP (green fluorescent protein)-FTO, and demonstrate that FTO resides in both the nucleus and cytoplasm. We show using 'FLIP' (fluorescence loss in photobleaching) that a mobile FTO fraction shuttles between both compartments. We performed a proteomic study and identified XPO2 (Exportin 2), one of a family of proteins that mediates the shuttling of proteins between the nucleus and the cytoplasm, as a binding partner of FTO. Finally, using deletion studies, we show that the N-terminus of FTO is required for its ability to shuttle between the nucleus and cytoplasm. In conclusion, FTO is present in both the nucleus and cytoplasm, with a mobile fraction that shuttles between both cellular compartments, possibly by interaction with XPO2.This is the final published version. It first appeared at http://www.bioscirep.org/bsr/034/bsr034e144.htm
FTO is necessary for the induction of leptin resistance by high-fat feeding.
OBJECTIVE: Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD. METHODS: We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin. Using transcriptomic analysis of hypothalamic tissue to identify relevant pathways affected by the loss of Fto, we combined data from co-immunoprecipitation, yeast 2-hybrid and luciferase reporter assays to identify mechanisms through which FTO can influence the development of leptin resistant states. RESULTS: Mice deficient in Fto significantly increased their fat mass in response to HFD. Fto (+/-) and Fto (-/-) mice remained sensitive to the anorexigenic effects of leptin, both after exposure to a HFD or after acute central application of palmitate. Genes encoding components of the NFкB signalling pathway were down-regulated in the hypothalami of Fto-deficient mice following a HFD. When this pathway was reactivated in Fto-deficient mice with a single low central dose of TNFα, the mice became less sensitive to the effect of leptin. We identified a transcriptional coactivator of NFкB, TRIP4, as a binding partner of FTO and a molecule that is required for TRIP4 dependent transactivation of NFкB. CONCLUSIONS: Our study demonstrates that, independent of body weight, Fto influences the metabolic outcomes of a HFD through alteration of hypothalamic NFкB signalling. This supports the notion that pharmacological modulation of FTO activity might have the potential for therapeutic benefit in improving leptin sensitivity, in a manner that is influenced by the nutritional environment.The authors thank Roger Cox (MRC Harwell) for kindly providing us with the Fto-deficient mouse strain. This study was supported by the Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/1), EU FP7- FOOD- 266408 Full4Health and the Helmholtz Alliance ICEMED.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S2212877815000241#
Truncation of POC1A associated with short stature and extreme insulin resistance.
We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health.This work was supported by the Wellcome Trust [grant numbers WT098498, WT098051,WT095515, and WT091310]; the Medical Research Council [MRC_MC_UU_12012/5]; the United Kingdom National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from Bioscientifica via http://dx.doi.org/10.1530/JME-15-009
Leptin-dependent Phosphorylation of PTEN Mediates Actin Restructuring and Activation of ATP-sensitive K+ Channels
Leptin activates multiple signaling pathways in cells, including the
phosphatidylinositol 3-kinase pathway, indicating a degree of cross-talk with
insulin signaling. The exact mechanisms by which leptin alters this signaling
pathway and how it relates to functional outputs are unclear at present. A
previous study has established that leptin inhibits the activity of the
phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10), an
important tumor suppressor and modifier of phosphoinositide signaling. In this
study we demonstrate that leptin phosphorylates multiple sites on the
C-terminal tail of PTEN in hypothalamic and pancreatic β-cells, an action
not replicated by insulin. Inhibitors of the protein kinases CK2 and glycogen
synthase kinase 3 (GSK3) block leptin-mediated PTEN phosphorylation. PTEN
phosphorylation mutants reveal the critical role these sites play in
transmission of the leptin signal to F-actin depolymerization. CK2 and GSK3
inhibitors also prevent leptin-mediated F-actin depolymerization and
consequent ATP-sensitive K+ channel opening. GSK3 kinase activity
is inhibited by insulin but not leptin in hypothalamic cells. Both hormones
increase N-terminal GSK3 serine phosphorylation, but in hypothalamic cells
this action of leptin is transient. Leptin, not insulin, increases GSK3
tyrosine phosphorylation in both cell types. These results demonstrate a
significant role for PTEN in leptin signal transmission and identify GSK3 as a
potential important signaling node contributing to divergent outputs for these
hormones
On the electrodynamics of moving bodies at low velocities
We discuss the seminal article in which Le Bellac and Levy-Leblond have
identified two Galilean limits of electromagnetism, and its modern
implications. We use their results to point out some confusion in the
literature and in the teaching of special relativity and electromagnetism. For
instance, it is not widely recognized that there exist two well defined
non-relativistic limits, so that researchers and teachers are likely to utilize
an incoherent mixture of both. Recent works have shed a new light on the choice
of gauge conditions in classical electromagnetism. We retrieve Le
Bellac-Levy-Leblond's results by examining orders of magnitudes, and then with
a Lorentz-like manifestly covariant approach to Galilean covariance based on a
5-dimensional Minkowski manifold. We emphasize the Riemann-Lorenz approach
based on the vector and scalar potentials as opposed to the Heaviside-Hertz
formulation in terms of electromagnetic fields. We discuss various applications
and experiments, such as in magnetohydrodynamics and electrohydrodynamics,
quantum mechanics, superconductivity, continuous media, etc. Much of the
current technology where waves are not taken into account, is actually based on
Galilean electromagnetism
Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency.
Non-synonymous mutations affecting both alleles of PCSK1 (proprotein convertase 1/3) are associated with obesity and impaired prohormone processing. We report a proband who was compound heterozygous for a maternally inherited frameshift mutation and a paternally inherited 474kb deletion that encompasses PCSK1, representing a novel genetic mechanism underlying this phenotype. Although pro-vasopressin is not a known physiological substrate of PCSK1, the development of central diabetes insipidus in this proband suggests that PCSK1 deficiency can be associated with impaired osmoregulation.ISF and SOR were supported by the Wellcome Trust, the MRC Centre for Obesity and Related Disorders and the UK NIHR Cambridge Biomedical Research Centre.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S1096719213001145#
- …
