663 research outputs found
KRb Feshbach Resonances: Modeling the interatomic potential
We have observed 28 heteronuclear Feshbach resonances in 10 spin combinations
of the hyperfine ground states of a 40K 87Rb mixture. The measurements were
performed by observing the loss rates from an atomic mixture at magnetic fields
between 0 and 700 G. This data was used to significantly refine an interatomic
potential derived from molecular spectroscopy, yielding a highly consistent
model of the KRb interaction. Thus, the measured resonances can be assigned to
the corresponding molecular states. In addition, this potential allows for an
accurate calculation of the energy differences between highly excited levels
and the rovibrational ground level. This information is of particular relevance
for the formation of deeply bound heteronuclear molecules. Finally, the model
is used to predict Feshbach resonances in mixtures of 87Rb combined with 39K or
41K.Comment: 4 pages, 3 figure
The exceptional Herbig Ae star HD101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star
We obtained high-resolution, high signal-to-noise UVES and a few lower
quality HARPS spectra revealing the presence of resolved magnetically split
lines. HD101412 is the first Herbig Ae star for which the rotational Doppler
effect was found to be small in comparison to the magnetic splitting. The
measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean
quadratic field was found to vary in the range of 3.5 to 4.8kG. To determine
the period of variations, we used radial velocity, equivalent width, line
width, and line asymmetry measurements of variable spectral lines of several
elements, as well as magnetic field measurements. The most pronounced
variability was detected for spectral lines of He I and the iron peak elements,
whereas the spectral lines of CNO elements are only slightly variable. From
spectral variations and magnetic field measurements we derived a potential
rotation period P_rot=13.86d, which has to be proven in future studies with a
larger number of observations. It is the first time that the presence of
element spots is detected on the surface of a Herbig Ae/Be star. Our previous
study of Herbig Ae stars revealed a trend towards stronger magnetic fields for
younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to
a few other (non-statistical) studies claiming that magnetic Herbig Ae stars
are progenitors of the magnetic Ap stars. New developments in MHD theory show
that the measured magnetic field strengths are compatible with a current-driven
instability of toroidal fields generated by differential rotation in the
stellar interior. This explanation for magnetic intermediate-mass stars could
be an alternative to a frozen-in fossil field.Comment: 7 pages, 6 figures, 1 table, to appear in Astronomische Nachrichte
Parametric amplification of vacuum fluctuations in a spinor condensate
Parametric amplification of vacuum fluctuations is crucial in modern quantum
optics, enabling the creation of squeezing and entanglement. We demonstrate the
parametric amplification of vacuum fluctuations for matter waves using a spinor
F=2 Rb-87 condensate. Interatomic interactions lead to correlated pair creation
in the m_F= +/- 1 states from an initial unstable m_F=0 condensate, which acts
as a vacuum for m_F unequal 0. Although this pair creation from a pure m_F=0
condensate is ideally triggered by vacuum fluctuations, unavoidable spurious
initial m_F= +/- 1 atoms induce a classical seed which may become the dominant
triggering mechanism. We show that pair creation is insensitive to a classical
seed for sufficiently large magnetic fields, demonstrating the dominant role of
vacuum fluctuations. The presented system thus provides a direct path towards
the generation of non-classical states of matter on the basis of spinor
condensates.Comment: 5 pages, 4 figure
Spontaneous breaking of spatial and spin symmetry in spinor condensates
Parametric amplification of quantum fluctuations constitutes a fundamental
mechanism for spontaneous symmetry breaking. In our experiments, a spinor
condensate acts as a parametric amplifier of spin modes, resulting in a twofold
spontaneous breaking of spatial and spin symmetry in the amplified clouds. Our
experiments permit a precise analysis of the amplification in specific spatial
Bessel-like modes, allowing for the detailed understanding of the double
symmetry breaking. On resonances that create vortex-antivortex superpositions,
we show that the cylindrical spatial symmetry is spontaneously broken, but
phase squeezing prevents spin-symmetry breaking. If, however, nondegenerate
spin modes contribute to the amplification, quantum interferences lead to
spin-dependent density profiles and hence spontaneously-formed patterns in the
longitudinal magnetization.Comment: 5 pages, 4 figure
Radio frequency association of heteronuclear Feshbach molecules
We present a detailed analysis of the production efficiency of weakly bound
heteronuclear KRb-Feshbach molecules using radio frequency association in a
harmonic trap. The efficiency was measured in a wide range of temperatures,
binding energies and radio frequencies. A comprehensive analytical model is
presented, explaining the observed asymmetric spectra and achieving good
quantitative agreement with the measured production rates. This model provides
a deep understanding of the molecule association process and paves the way for
future experiments which rely on Feshbach molecules e.g. for the production of
deeply bound molecules.Comment: 5 pages, 4 figure
Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries
Migration of charged point defects triggered by the local random
depolarization field is shown to plausibly explain aging of poled ferroelectric
ceramics providing reasonable time and acceptor concentration dependences of
the emerging internal bias field. The theory is based on the evaluation of the
energy of the local depolarization field caused by mismatch of the
polarizations of neighbor grains. The kinetics of charge migration assumes
presence of mobile oxygen vacancies in the material due to the intentional or
unintentional acceptor doping. Satisfactory agreement of the theory with
experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure
Overcritical Rotation of a Trapped Bose-Einstein Condensate
The rotational motion of an interacting Bose-Einstein condensate confined by
a harmonic trap is investigated by solving the hydrodynamic equations of
superfluids, with the irrotationality constraint for the velocity field. We
point out the occurrence of an overcritical branch where the system can rotate
with angular velocity larger than the oscillator frequencies. We show that in
the case of isotropic trapping the system exhibits a bifurcation from an
axisymmetric to a triaxial configuration, as a consequence of the interatomic
forces. The dynamical stability of the rotational motion with respect to the
dipole and quadrupole oscillations is explicitly discussed.Comment: 6 pages, 3 postscript figure
Optical dipole traps and atomic waveguides based on Bessel light beams
We theoretically investigate the use of Bessel light beams generated using
axicons for creating optical dipole traps for cold atoms and atomic
waveguiding. Zeroth-order Bessel beams can be used to produce highly elongated
dipole traps allowing for the study of one-dimensional trapped gases and
realization of a Tonks gas of impentrable bosons. First-order Bessel beams are
shown to be able to produce tight confined atomic waveguides over centimeter
distances.Comment: 20 pages, 5 figures, to appear in Phys. Rev.
Transport of a quantum degenerate heteronuclear Bose-Fermi mixture in a harmonic trap
We report on the transport of mixed quantum degenerate gases of bosonic 87Rb
and fermionic 40K in a harmonic potential provided by a modified QUIC trap. The
samples are transported over a distance of 6 mm to the geometric center of the
anti-Helmholtz coils of the QUIC trap. This transport mechanism was implemented
by a small modification of the QUIC trap and is free of losses and heating. It
allows all experiments using QUIC traps to use the highly homogeneous magnetic
fields that can be created in the center of a QUIC trap and improves the
optical access to the atoms, e.g., for experiments with optical lattices. This
mechanism may be cascaded to cover even larger distances for applications with
quantum degenerate samples.Comment: 7 pages, 8 figure
- …
