5,358 research outputs found
Prospects for the discovery of the next new element: Influence of projectiles with Z > 20
The possibility of forming new superheavy elements with projectiles having Z
> 20 is discussed. Current research has focused on the fusion of 48Ca with
actinides targets, but these reactions cannot be used for new element
discoveries in the future due to a lack of available target material. The
influence on reaction cross sections of projectiles with Z > 20 have been
studied in so-called analog reactions, which utilize lanthanide targets
carefully chosen to create compound nuclei with energetics similar to those
found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr +
159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M
University using the Momentum Achromat Recoil Spectrometer. The results of
these experimental studies are discussed in terms of the influence of
collective enhancements to level density for compound nuclei near closed
shells, and the implications for the production of superheavy elements. We have
observed no evidence to contradict theoretical predictions that the maximum
cross section for the 249Cf(50Ti, 4n)295120 and 248Cm(54Cr, 4n)298120 reactions
should be in the range of 10-100 fb.Comment: An invited talk given by Charles M. Folden III at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. Also contains information presented by
Dmitriy A. Mayorov and Tyler A. Werke in separate contributions to the
conference. This contribution will appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
Scaling Laws and Transient Times in 3He Induced Nuclear Fission
Fission excitation functions of compound nuclei in a mass region where shell
effects are expected to be very strong are shown to scale exactly according to
the transition state prediction once these shell effects are accounted for. The
fact that no deviations from the transition state method have been observed
within the experimentally investigated excitation energy regime allows one to
assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available
at http://csa5.lbl.gov/moretto/ps/he3_paper.p
Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems
Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests
Spallation Residues in the Reaction 56Fe + p at 0.3, 0.5, 0.75, 1.0 and 1.5 A GeV
The spallation residues produced in the bombardment of 56}Fe at 1.5, 1.0,
0.75, 0.5 and 0.3 A GeV on a liquid-hydrogen target have been measured using
the reverse kinematics technique and the Fragment Separator at GSI (Darmstadt).
This technique has permitted the full identification in charge and mass of all
isotopes produced with cross-sections larger than 10^{-2} mb down to Z=8. Their
individual production cross-sections and recoil velocities at the five energies
are presented. Production cross-sections are compared to previously existing
data and to empirical parametric formulas, often used in cosmic-ray
astrophysics. The experimental data are also extensively compared to different
combinations of intra-nuclear cascade and de-excitation models. It is shown
that the yields of the lightest isotopes cannot be accounted for by standard
evaporation models. The GEMINI model, which includes an asymmetric fission
decay mode, gives an overall good agreement with the data. These experimental
data can be directly used for the estimation of composition modifications and
damages in materials containing iron in spallation sources. They are also
useful for improving high precision cosmic-ray measurements.Comment: Submited to Phys. Rev. C (10/2006
Measurement of the complete nuclide production and kinetic energies of the system 136Xe + hydrogen at 1 GeV per nucleon
We present an extensive overview of production cross sections and kinetic
energies for the complete set of nuclides formed in the spallation of 136Xe by
protons at the incident energy of 1 GeV per nucleon. The measurement was
performed in inverse kinematics at the FRagment Separator (GSI, Darmstadt).
Slightly below the Businaro-Gallone point, 136Xe is the stable nuclide with the
largest neutron excess. The kinematic data and cross sections collected in this
work for the full nuclide production are a general benchmark for modelling the
spallation process in a neutron-rich nuclear system, where fission is
characterised by predominantly mass-asymmetric splits.Comment: 18 pages, 14 figure
Degenerate Dirac Neutrinos
A simple extension of the standard model is proposed in which all the three
generations of neutrinos are Dirac particles and are naturally light. We then
assume that the neutrino mass matrix is diagonal and degenerate, with a few eV
mass to solve the dark matter problem. The self energy radiative corrections,
however, remove this degeneracy and allow mixing of these neutrinos. The
electroweak radiative corrections then predict a lower bound on the mass difference which solves the solar neutrino problem through MSW
mechanism and also predict a lower bound on the mass
difference which is just enough to explain the atmospheric neutrino problem as
reported by super Kamiokande.Comment: 11 pages latex fil
Reactor-based Neutrino Oscillation Experiments
The status of neutrino oscillation searches employing nuclear reactors as
sources is reviewed. This technique, a direct continuation of the experiments
that proved the existence of neutrinos, is today an essential tool in
investigating the indications of oscillations found in studying neutrinos
produced in the sun and in the earth's atmosphere. The low-energy of the
reactor \nuebar makes them an ideal tool to explore oscillations with small
mass differences and relatively large mixing angles.
In the last several years the determination of the reactor anti-neutrino flux
and spectrum has reached a high degree of accuracy. Hence measurements of these
quantities at a given distance L can be readily compared with the expectation
at L = 0, thus testing \nuebar disappearance.
While two experiments, Chooz and Palo Verde, with baselines of about 1 km and
thus sensitive to the neutrino mass differences associated with the atmospheric
neutrino anomaly, have collected data and published results recently, an
ambitious project with a baseline of more than 100 km, Kamland, is preparing to
take data. This ultimate reactor experiment will have a sensitivity sufficient
to explore part of the oscillation phase space relevant to solar neutrino
scenarios. It is the only envisioned experiment with a terrestrial source of
neutrinos capable of addressing the solar neutrino puzzle.Comment: Submitted to Reviews of Modern Physics 34 pages, 39 figure
A multi-detector array for high energy nuclear e+e- pair spectrosocopy
A multi-detector array has been constructed for the simultaneous measurement
of energy- and angular correlation of electron-positron pairs produced in
internal pair conversion (IPC) of nuclear transitions up to 18 MeV. The
response functions of the individual detectors have been measured with
mono-energetic beams of electrons. Experimental results obtained with 1.6 MeV
protons on targets containing B and F show clear IPC over a wide
angular range. A comparison with GEANT simulations demonstrates that angular
correlations of pairs of transitions in the energy range between 6 and
18 MeV can be determined with sufficient resolution and efficiency to search
for deviations from IPC due to the creation and subsequent decay into
of a hypothetical short-lived neutral boson.Comment: 20 pages, 8 figure
Recent Advances in Graph Partitioning
We survey recent trends in practical algorithms for balanced graph
partitioning together with applications and future research directions
- …
