851 research outputs found
Near-field light localization using subwavelength apertures incorporated with metamaterials
Cataloged from PDF version of article.We report strong near-field electromagnetic localization by using subwavelength apertures and metamaterials that operate at microwave frequencies. We designed split ring resonators with distinct configurations in order to obtain extraordinary transmission results. Furthermore, we analyzed the field localization and focusing characteristics of the transmitted evanescent waves. The employed metamaterial configurations yielded an improvement on the transmission efficiency on the order of 27 dB and 50 dB for the deep subwavelength apertures. The metamaterial loaded apertures are considered as a total system that offered spot size conversion ratios as high as 7.12 and 9.11 for the corresponding metamaterial configurations. The proposed system is shown to intensify the electric fields of the source located in the near-field. It also narrows down the electromagnetic waves such that a full width at half maximum value of λ/29 is obtained. © 2012 Elsevier B.V. All rights reserved
Transmission enhancement through deep subwavelength apertures using connected split ring resonators
Cataloged from PDF version of article.We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of lambda/31x lambda/12 (width x length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries. (C) 2010 Optical Society of Americ
Emission spectra and intrinsic optical bistability in a two-level medium
Scattering of resonant radiation in a dense two-level medium is studied
theoretically with account for local field effects and renormalization of the
resonance frequency. Intrinsic optical bistability is viewed as switching
between different spectral patterns of fluorescent light controlled by the
incident field strength. Response spectra are calculated analytically for the
entire hysteresis loop of atomic excitation. The equations to describe the
non-linear interaction of an atomic ensemble with light are derived from the
Bogolubov-Born-Green-Kirkwood-Yvon hierarchy for reduced single particle
density matrices of atoms and quantized field modes and their correlation
operators. The spectral power of scattered light with separated coherent and
incoherent constituents is obtained straightforwardly within the hierarchy. The
formula obtained for emission spectra can be used to distinguish between
possible mechanisms suggested to produce intrinsic bistability.Comment: 18 pages, 5 figure
Unraveling the impact of therapeutic drug monitoring via machine learning for patients with sepsis
Clinical studies investigating the benefits of beta-lactam therapeutic drug monitoring (TDM) among critically
ill patients are hindered by small patient groups, variability between studies, patient heterogeneity, and inad-
equate use of TDM. Accordingly, definitive conclusions regarding the efficacy of TDM remain elusive. To
address these challenges, we propose an innovative approach that leverages data-driven methods to unveil
the concealed connections between therapy effectiveness and patient data, collected through a randomized
controlled trial (DRKS00011159; 10th October 2016). Our findings reveal that machine learning algorithms can
successfully identify informative features that distinguish between healthy and sick states. These hold prom-
ise as potential markers for disease classification and severity stratification, as well as offering a continuous
and data-driven ‘‘multidimensional’’ Sequential Organ Failure Assessment (SOFA) score. The positive impact
of TDM on patient recovery rates is demonstrated by unraveling the intricate connections between therapy
effectiveness and clinically relevant data via machine learning
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment
The OLYMPUS collaboration reports on a precision measurement of the
positron-proton to electron-proton elastic cross section ratio, ,
a direct measure of the contribution of hard two-photon exchange to the elastic
cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams
were directed through a hydrogen gas target internal to the DORIS storage ring
at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and
time-of-flight scintillators detected elastically scattered leptons in
coincidence with recoiling protons over a scattering angle range of to . The relative luminosity between the two beam species
was monitored using tracking telescopes of interleaved GEM and MWPC detectors
at , as well as symmetric M{\o}ller/Bhabha calorimeters at
. A total integrated luminosity of 4.5~fb was collected. In
the extraction of , radiative effects were taken into account
using a Monte Carlo generator to simulate the convolutions of internal
bremsstrahlung with experiment-specific conditions such as detector acceptance
and reconstruction efficiency. The resulting values of , presented
here for a wide range of virtual photon polarization ,
are smaller than some hadronic two-photon exchange calculations predict, but
are in reasonable agreement with a subtracted dispersion model and a
phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table
- …
