131 research outputs found

    Exploring \pp scattering in the \1N picture

    Get PDF
    In the large NcN_c approximation to QCDQCD, the leading \pp scattering amplitude is expressed as the sum of an infinite number of tree diagrams. We investigate the possibility that an adequate approximation at energies up to somewhat more than one GeVGeV can be made by keeping diagrams which involve the exchange of resonances in this energy range in addition to the simplest chiral contact terms. In this approach crossing symmetry is automatic but individual terms tend to drastically violate partial wave unitarity. We first note that the introduction of the ρ\rho meson in a chirally invariant manner substantially delays the onset of drastic unitarity violation which would be present for the {\it current algebra} term alone. This suggests a possibility of local (in energy) cancellation which we then explore in a phenomenological way. We include exchanges of leading resonances up to the 1.3GeV1.3 GeV region. However, unitarity requires more structure which we model by a four derivative contact term or by a low lying scalar resonance which is presumably subleading in the \1N expansion, but may nevertheless be important. The latter two flavor model gives a reasonable description of the phase shift δ00\delta^0_0 up until around 860MeV860 MeV, before the effects associated which the KKˉK\bar{K} threshold come into play.Comment: 27 LaTex pages + 13 figures (also available in hard-copy

    Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems

    Get PDF
    We show that, even in the most favorable case, the motion of a small spherical tracer suspended in a fluid of the same density may differ from the corresponding motion of an ideal passive particle. We demonstrate furthermore how its dynamics may be applied to target trajectories in Hamiltonian systems.Comment: See home page http://lec.ugr.es/~julya

    On a model with two zeros in the neutrino mass matrix

    Full text link
    We consider a Majorana neutrino mass matrix Mν\mathcal{M}_\nu with (Mν)μμ=(Mν)ττ=0(\mathcal{M}_\nu)_{\mu\mu} = (\mathcal{M}_\nu)_{\tau\tau} = 0, in the basis where the charged-lepton mass matrix is diagonal. We show that this pattern for the lepton mass matrices can be enforced by extending the Standard Model with three scalar SU(2) triplets and by using a horizontal symmetry group \mathbbm{Z}_4. The Ma--Sarkar (type-II seesaw) mechanism leads to very small vacuum expectation values for the triplets, thus explaining the smallness of the neutrino masses; at the same time, that mechanism renders the physical scalars originating in the triplets very heavy. We show that the conditions (Mν)μμ=(Mν)ττ=0(\mathcal{M}_\nu)_{\mu\mu} = (\mathcal{M}_\nu)_{\tau\tau} = 0 allow both for a normal neutrino mass spectrum and for an inverted one. In the first case, the neutrino masses must be larger than 0.1eV0.1 {eV} and the atmospheric mixing angle θ23\theta_{23} must be practically equal to 4545^\circ. In the second case, the product sinθ13tan2θ23\sin{\theta_{13}} | \tan{2 \theta_{23}} | must be of order one or larger, thus correlating the large or maximal atmospheric neutrino mixing with the smallness of the mixing angle θ13\theta_{13}.Comment: 13 pages, no figures, plain LaTeX; one equation added, published references updated, final version for J. Phys.

    Borromean Binding of Three or Four Bosons

    Get PDF
    We estimate the ratio R=g3/g2R=g_{3}/g_{2} of the critical coupling constants g2g_{2} and g3g_{3} which are required to achieve binding of 2 or 3 bosons, respectively, with a short-range interaction, and examine how this ratio depends on the shape of the potential. Simple monotonous potentials give R0.8R\simeq 0.8. A wide repulsive core pushes this ratio close to R=1. On the other hand, for an attractive well protected by an external repulsive barrier, the ratio approaches the rigorous lower bound R=2/3R=2/3. We also present results for N=4 bosons, sketch the extension to N>4N>4, and discuss various consequences.Comment: 12 pages, RevTeX, 5 Figures in tex include

    Tests for a Strong Electroweak Sector at Future e^+e^- High Energy Colliders

    Get PDF
    The study of the scattering at high energy of the gauge bosons W and Z, in particular longitudinally polarized W and Z, can clarify the mechanism of spontaneous symmetry breaking in the Standard Model of the electroweak interactions. Different models of strong electroweak sector, based on the effective lagrangian approach are briefly reviewed. They include models with no resonance, with scalar resonance, additional vector and axial-vector resonances. The effective Lagrangians are derived from the chiral symmetry of the symmetry breaking sector. Limits on these models from existing measurements, mainly LEP and Tevatron, are considered. We study also direct and indirect effects of the new interactions at high energy future e^+e^- linear colliders, through WW scattering and the direct production of these new vector gauge bosons.Comment: 74 pages, 19 figures and 4 tables included, Latex, uses epsf, to appear in La Rivista del Nuovo Cimento, some minor change

    Couplings of light I=0 scalar mesons to simple operators in the complex plane

    Full text link
    The flavour and glue structure of the light scalar mesons in QCD are probed by studying the couplings of the I=0 mesons σ(600)\sigma(600) and f0(980)f_0(980) to the operators qˉq\bar{q}q, αsG2\alpha_s G^2 and to two photons. The Roy dispersive representation for the ππ\pi\pi amplitude t00(s)t_0^0(s) is used to determine the pole positions as well as the residues in the complex plane. On the real axis, t00t_0^0 is constrained to solve the Roy equation together with elastic unitarity up to the K\Kbar threshold leading to an improved description of the f0(980)f_0(980). The problem of using a two-particle threshold as a matching point is discussed. A simple relation is established between the coupling of a scalar meson to an operator jSj_S and the value of the related pion form-factor computed at the resonance pole. Pion scalar form-factors as well as two-photon partial-wave amplitudes are expressed as coupled-channel Omn\`es dispersive representations. Subtraction constants are constrained by chiral symmetry and experimental data. Comparison of our results for the qˉq\bar{q}q couplings with earlier determinations of the analogous couplings of the lightest I=1 and I=1/2I=1/2 scalar mesons are compatible with an assignment of the σ\sigma, κ\kappa, a0(980)a_0(980), f0(980)f_0(980) into a nonet. Concerning the gluonic operator αsG2\alpha_s G^2 we find a significant coupling to both the σ\sigma and the f0(980)f_0(980).Comment: 31 pages, 5 figure

    Study of γπππ\gamma\pi \to \pi\pi below 1 GeV using Integral Equation Approach

    Full text link
    The scattering of γπππ\gamma \pi \to \pi \pi is studied using the axial anomaly, elastic unitarity, analyticity and crossing symmetry. Using the technique to derive the Roy's equation, an integral equation for the P-wave amplitude is obtained in terms of the strong P-wave pion pion phase shifts. Its solution is obtained numerically by an iteration procedure using the starting point as the solution of the integral equation of the Muskelshsvilli-Omnes type. It is, however, ambiguous and depends sensitively on the second derivative of the P-wave amplitude at s=mπ2s=m_\pi^2 which cannot directly be measured.Comment: 26 pages, 10 figure

    Precise solution of few-body problems with stochastic variational method on correlated Gaussian basis

    Get PDF
    Precise variational solutions are given for problems involving diverse fermionic and bosonic N=27N=2-7-body systems. The trial wave functions are chosen to be combinations of correlated Gaussians, which are constructed from products of the single-particle Gaussian wave packets through an integral transformation, thereby facilitating fully analytical calculations of the matrix elements. The nonlinear parameters of the trial function are chosen by a stochastic technique. The method has proved very efficient, virtually exact, and it seems feasible for any few-body bound-state problems emerging in nuclear or atomic physics.Comment: 39 pages (revtex) + 3 figures (appended as compressed uuencoded .ps files

    Unitary Standard Model from Spontaneous Dimensional Reduction and Weak Boson Scattering at the LHC

    Full text link
    Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by a number of quantum gravity approaches which all indicate that the spacetime dimensions get reduced at high energies. In this work, we formulate an effective theory of electroweak interactions based upon the standard model, incorporating the spontaneous reduction of space-dimensions at TeV scale. The electroweak gauge symmetry is nonlinearly realized with or without a Higgs boson. We demonstrate that the SDR ensures good high energy behavior and predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV, the TeV-scale SDR gives a natural solution to the hierarchy problem. Such a light Higgs boson can have induced anomalous gauge couplings from the TeV-scale SDR. We find that the corresponding WW scattering cross sections become unitary at TeV scale, but exhibit different behaviors from that of the 4d standard model. These can be discriminated by the WW scattering experiments at the LHC.Comment: 38pp, Eur.Phys.J.(in Press); extended discussions for testing non-SM Higgs boson(125GeV) via WW scattering; minor clarifications added; references added; a concise companion is given in the short PLB letter arXiv:1301.457

    Quark-model study of few-baryon systems

    Get PDF
    We review the application of non-relativistic constituent quark models to study one, two and three non-strange baryon systems. We present results for the baryon spectra, potentials and observables of the NN, NΔ\Delta, ΔΔ\Delta\Delta and NN(1440)^*(1440) systems, and also for the binding energies of three non-strange baryon systems. We make emphasis on observable effects related to quark antisymmetry and its interplay with quark dynamics.Comment: 82 pages, 36 figures, 18 tables. Accepted for publication in Reports on Progress in Physic
    corecore