371 research outputs found
Universal scattering behavior of co-assembled nanoparticle-polymer clusters
Water-soluble clusters made from 7 nm inorganic nanoparticles have been
investigated by small-angle neutron scattering. The internal structure factor
of the clusters was derived and exhibited a universal behavior as evidenced by
a correlation hole at intermediate wave-vectors. Reverse Monte-Carlo
calculations were performed to adjust the data and provided an accurate
description of the clusters in terms of interparticle distance and volume
fraction. Additional parameters influencing the microstructure were also
investigated, including the nature and thickness of the nanoparticle adlayer.Comment: 5 pages, 4 figures, paper published in Physical Review
On the universality of small scale turbulence
The proposed universality of small scale turbulence is investigated for a set
of measurements in a cryogenic free jet with a variation of the Reynolds number
(Re) from 8500 to 10^6. The traditional analysis of the statistics of velocity
increments by means of structure functions or probability density functions is
replaced by a new method which is based on the theory of stochastic Markovian
processes. It gives access to a more complete characterization by means of
joint probabilities of finding velocity increments at several scales. Based on
this more precise method our results call in question the concept of
universality.Comment: 4 pages, 4 figure
Low Temperature Gaseous Helium and very High Turbulence Experiments
Cryogenic gaseous helium gives access to extreme turbulent experimental conditions. The very high cooling helium flow rates available at CERN have been used to reach Reynolds numbers up to Re ~ 10**7 in a round jet experiment. First results are discussed
Smooth stable and unstable manifolds for stochastic partial differential equations
Invariant manifolds are fundamental tools for describing and understanding
nonlinear dynamics. In this paper, we present a theory of stable and unstable
manifolds for infinite dimensional random dynamical systems generated by a
class of stochastic partial differential equations. We first show the existence
of Lipschitz continuous stable and unstable manifolds by the Lyapunov-Perron's
method. Then, we prove the smoothness of these invariant manifolds
Non-Gaussian Distributions in Extended Dynamical Systems
We propose a novel mechanism for the origin of non-Gaussian tails in the
probability distribution functions (PDFs) of local variables in nonlinear,
diffusive, dynamical systems including passive scalars advected by chaotic
velocity fields. Intermittent fluctuations on appropriate time scales in the
amplitude of the (chaotic) noise can lead to exponential tails. We provide
numerical evidence for such behavior in deterministic, discrete-time passive
scalar models. Different possibilities for PDFs are also outlined.Comment: 12 pages and 6 figs obtainable from the authors, LaTex file,
OSU-preprint-
Self-Organized States in Cellular Automata: Exact Solution
The spatial structure, fluctuations as well as all state probabilities of
self-organized (steady) states of cellular automata can be found (almost)
exactly and {\em explicitly} from their Markovian dynamics. The method is shown
on an example of a natural sand pile model with a gradient threshold.Comment: 4 pages (REVTeX), incl. 2 figures (PostScript
Transformation kinetics of alloys under non-isothermal conditions
The overall solid-to-solid phase transformation kinetics under non-isothermal
conditions has been modeled by means of a differential equation method. The
method requires provisions for expressions of the fraction of the transformed
phase in equilibrium condition and the relaxation time for transition as
functions of temperature. The thermal history is an input to the model. We have
used the method to calculate the time/temperature variation of the volume
fraction of the favored phase in the alpha-to-beta transition in a zirconium
alloy under heating and cooling, in agreement with experimental results. We
also present a formulation that accounts for both additive and non-additive
phase transformation processes. Moreover, a method based on the concept of path
integral, which considers all the possible paths in thermal histories to reach
the final state, is suggested.Comment: 16 pages, 7 figures. To appear in Modelling Simul. Mater. Sci. En
A Cryogenic High-Reynolds Turbulence Experiment at CERN
The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively equipped with "hot" wire micro-anemometers, acoustic scattering vorticity measurements and a large-bandwidth data acquisition system
Transitions and Probes in Turbulent Helium
Previous analysis of a Paris turbulence experiment \cite{zoc94,tab95} shows a
transition at the Taylor Reynolds number \rel \approx 700. Here correlation
function data is analyzed which gives further evidence for this transition. It
is seen in both the power spectrum and in structure function measurements. Two
possible explanations may be offered for this observed transition: that it is
intrinsic to the turbulence flow in this closed box experiment or that it is an
effect of a change in the flow around the anemometer. We particularly examine a
pair of ``probe effects''. The first is a thermal boundary layer which does
exist about the probe and does limit the probe response, particularly at high
frequencies. Arguments based on simulations of the response and upon
observations of dissipation suggests that this effect is only crucial beyond
\rel\approx 2000. The second effect is produced by vortex shedding behind the
probe. This has been seen to produce a large modification in some of the power
spectra for large \rel. It might also complicate the interpretation of the
experimental results. However, there seems to be a remaining range of data for
\rel < 1300 uncomplicated by these effects, and which are thus suggestive of
an intrinsic transition.Comment: uuencoded .ps files. submitted to PRE. 12 figures are sent upon
request to jane wang ([email protected]
- …
