411 research outputs found

    Inefficiencies in bargaining - departing from Akerlof and Myerson-Satterthwaite

    Get PDF
    We consider bargaining problems in which parties have access to outside options. The size of the pie is commonly known and each party privately knows the realization of her outside option. Parties are assumed to have a veto right, which allows them to obtain at least their outside option payoff in any event. Besides, agents can receive no subsidy ex post. We show that inefficiencies are inevitable for virtually all distributions of outside options, as long as the size of the surplus generated by the agreement is uncertain and may be arbitrarily small for all realizations of either party’s outside option. Our inefficiency result holds true whatever the degree of correlation between the distributions of outside options, and even if it is known for sure that an agreement is beneficial. The same insights apply to the bargaining between a buyer and a seller privately informed of their valuations and to public good problems among agents privately informed of their willingness to pay

    THE WAIT-AND-SEE OPTION IN ASCENDING PRICE AUCTIONS

    Get PDF

    Viable tax constitutions

    Get PDF
    Taxation is only sustainable if the general public complies with it. This observation is uncontroversial with tax practitioners but has been ignored by the public finance tradition, which has interpreted tax constitutions as binding contracts by which the power to tax is irretrievably conferred by individuals to government, which can then levy any tax it chooses. However, in the absence of an outside party enforcing contracts between members of a group, no arrangement within groups can be considered to be a binding contract, and therefore the power of tax must be sanctioned by individuals on an ongoing basis. In this paper we offer, for the first time, a theoretical analysis of this fundamental compliance problem associated with taxation, obtaining predictions that in some cases point to a re-interptretation of the theoretical constructions of the public finance tradition while in others call them into question

    Fractional transport equations for Levy stable processes

    Full text link
    The influence functional method of Feynman and Vernon is used to obtain a quantum master equation for a Brownian system subjected to a Levy stable random force. The corresponding classical transport equations for the Wigner function are then derived, both in the limit of weak and strong friction. These are fractional extensions of the Klein-Kramers and the Smoluchowski equations. It is shown that the fractional character acquired by the position in the Smoluchowski equation follows from the fractional character of the momentum in the Klein-Kramers equation. Connections among fractional transport equations recently proposed are clarified.Comment: 4 page

    Random walks and polymers in the presence of quenched disorder

    Full text link
    After a general introduction to the field, we describe some recent results concerning disorder effects on both `random walk models', where the random walk is a dynamical process generated by local transition rules, and on `polymer models', where each random walk trajectory representing the configuration of a polymer chain is associated to a global Boltzmann weight. For random walk models, we explain, on the specific examples of the Sinai model and of the trap model, how disorder induces anomalous diffusion, aging behaviours and Golosov localization, and how these properties can be understood via a strong disorder renormalization approach. For polymer models, we discuss the critical properties of various delocalization transitions involving random polymers. We first summarize some recent progresses in the general theory of random critical points : thermodynamic observables are not self-averaging at criticality whenever disorder is relevant, and this lack of self-averaging is directly related to the probability distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. We describe the results of this analysis for the bidimensional wetting and for the Poland-Scheraga model of DNA denaturation.Comment: 17 pages, Conference Proceedings "Mathematics and Physics", I.H.E.S., France, November 200

    Evaluation of crowdsourcing Wi-Fi radio map creation in a real scenario for AAL applications

    Get PDF
    Indoor location at room level plays a key role for providing useful services for Ambient Assisted Living (AAL) applications. Wi-Fi fingerprinting indoor location methods are extensively used due to the widespread availability of WiFi infrastructures. A main drawback of Wi-Fi fingerprinting methods is the temporal cost involved in creating the radio maps. Crowdsourcing strategies have been presented as a way to minimize the cost of radio map creation. In this work, we present an extensive study of the issues involved when using crowdsourcing strategies for that purpose. Results provided by extensive experiments performed in a real scenario by three users during two weeks are presented. The main conclusions are: i) crowdsourcing data improves accuracy location in most studied cases; ii) accuracy of Wi-Fi fingerprinting methods decay along time; iii) device diversity is an important issue even when using the same device model

    How do risk attitudes affect measured confidence?

    Get PDF
    We examine the relationship between confidence in own absolute performance and risk attitudes using two confidence elicitation procedures: self-reported (non-incentivised) confidence and an incentivised procedure that elicits the certainty equivalent of a bet based on performance. The former procedure reproduces the “hard-easy effect” (underconfidence in easy tasks and overconfidence in hard tasks) found in a large number of studies using non-incentivised self-reports. The latter procedure produces general underconfidence, which is significantly reduced, but not eliminated when we filter out the effects of risk attitudes. Finally, we find that self-reported confidence correlates significantly with features of individual risk attitudes including parameters of individual probability weighting

    Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    Get PDF
    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tracking systems and the liquid argon barrel electromagnetic calorimeter

    The Optical Instrumentation of the ATLAS Tile Calorimeter

    Get PDF
    The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly locations.The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper

    Search for direct top squark pair production in final states with two leptons in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb−1 of integrated luminosity from proton–proton collisions at √s=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~ and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~→bχ~1± into a b-quark and the lightest chargino with χ~1±→Wχ~10 , t~→tχ~10 into an on-shell top quark and the lightest neutralino, the three-body decay t~→bWχ~10 and the four-body decay t~→bℓνχ~10. No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~ and χ~01 masses. The results exclude at 95% confidence level t~ masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches
    corecore