170 research outputs found
Molecular cloning, expression analysis and assignment of the porcine tumor necrosis factor superfamily member 10 gene (TNFSF10) to SSC13q34 -> q36 by fluorescence in situ hybridization and radiation hybrid mapping
We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85 % identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Nor-them blot analysis detected TNFSF10-specific transcripts (similar to 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34 -> q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel. Copyright (c) 2005S. KargerAG, Basel
Tracing selection signatures in the pig genome gives evidence for selective pressures on a unique curly hair phenotype in Mangalitza
Selection for desirable traits and breed-specific phenotypes has left distinctive footprints in the genome of pigs. As representative of a breed with strong selective traces aiming for robustness, health and performance, the Mangalitza pig, a native curly-haired pig breed from Hungary, was investigated in this study. Whole genome sequencing and SNP chip genotyping was performed to detect runs of homozygosity (ROH) in Mangalitza and Mangalitza-crossbreeds. We identified breed specific ROH regions harboring genes associated with the development of the curly hair type and further characteristics of this breed. Further analysis of two matings of Mangalitza with straight-coated pig breeds confirmed an autosomal dominant inheritance of curly hair. Subsequent scanning of the genome for variant effects on this trait revealed two variants potentially affecting hair follicle development and differentiation. Validation in a large sample set as well as in imputed SNP data confirmed these variants to be Mangalitza-specific. Herein, we demonstrated how strong artificial selection has shaped the genome in Mangalitza pigs and left traces in the form of selection signatures. This knowledge on genomic variation promoting unique phenotypes like curly hair provides an important resource for futures studies unraveling genetic effects for special characteristics in livestock
Keel bone condition in laying hens: a histological evaluation of macroscopically assessed keel bones
De novo ZIC2 frameshift variant associated with frontonasal dysplasia in a Limousin calf
Background: Bovine frontonasal dysplasias like arhinencephaly, synophthalmia, cyclopia and anophthalmia are sporadic congenital facial malformations. In this study, computed tomography, necropsy, histopathological examinations and whole genome sequencing on an Illumina NextSeq500 were performed to characterize a stillborn Limousin calf with frontonasal dysplasia. In order to identify private genetic and structural variants, we screened whole genome sequencing data of the affected calf and unaffected relatives including parents, a maternal and paternal halfsibling.Results: The stillborn calf exhibited severe craniofacial malformations. Nose and maxilla were absent, mandibles were upwardly curved and a median cleft palate was evident. Eyes, optic nerve and orbital cavities were not developed and the rudimentary orbita showed hypotelorism. A defect centrally in the front skull covered with a membrane extended into the intracranial cavity. Aprosencephaly affected telencephalic and diencephalic structures and cerebellum. In addition, a shortened tail was seen. Filtering whole genome sequencing data revealed a private frameshift variant within the candidate gene ZIC2 in the affected calf. This variant was heterozygous mutant in this case and homozygous wild type in parents, half-siblings and controls.Conclusions: We found a novel ZIC2 frameshift mutation in an aprosencephalic Limousin calf. The origin of this variant is most likely due to a de novo mutation in the germline of one parent or during very early embryonic development. To the authors' best knowledge, this is the first identified mutation in cattle associated with bovine frontonasal dysplasia.<br
A Missense Mutation in the Collagen Triple Helix of EDA Is Associated with X-Linked Recessive Hypohidrotic Ectodermal Dysplasia in Fleckvieh Cattle.
Mutations within the ectodysplasin A (EDA) gene have been associated with congenital hypotrichosis and anodontia (HAD/XHED) in humans, mice, dogs and cattle. We identified a three-generation family of Fleckvieh cattle with male calves exhibiting clinical and histopathological signs consistent with an X-linked recessive HAD (XHED). Whole genome and Sanger sequencing of cDNA showed a perfect association of the missense mutation g.85716041G>A (ss2019497443, rs1114816375) within the EDA gene with all three cases following an X-linked recessive inheritance, but normal EDAR and EDARADD. This mutation causes an exchange of glycine (G) with arginine (R) at amino acid position 227 (p.227G>R) in the second collagen triple helix repeat domain of EDA. The EDA variant was associated with a significant reduction and underdevelopment of hair follicles along with a reduced outgrowth of hairs, a complete loss of seromucous nasolabial and mucous tracheal and bronchial glands and a malformation of and reduction in number of teeth. Thermostability of EDA G227R was reduced, consistent with a relatively mild hair and tooth phenotype. However, incisors and canines were more severely affected in one of the calves, which correlated with the presence of a homozygous missense mutation of RNF111 (g.51306765T>G), a putative candidate gene possibly associated with tooth number in EDA-deficient Fleckvieh calves
Assignment of the <i>TYK2</i> gene to equine chromosome 7q12-q13 (Brief report)
Abstract. Tyrosine kinase 2 (TYK2) is a member of the janus kinase gene family and encodes an 1187 amino acid protein. All four members of the janus kinase family JAK1, JAK2, JAK3, and TYK2 associate with various cytokine receptors and mediate the signal transduction by tyrosine phosphorylation of downstream targets (YAMOAKA et al., 2004). Studies with tyk2 deficient mice demonstrated impairment of interferon α/β signaling (KARAGHIOSOFF et al., 2003). Mutations in the murine tyk2 gene are associated with increased susceptibility to infectious and autoimmune diseases (SHAW et al., 2003). The human TYK2 gene consists of 25 exons spanning 30,003 bp on human chromosome 19p13.2 starting at 10,322,209 bp. The objective of this study was to determine the chromosomal location of TYK2 in the horse by FISH and RH mapping.
</jats:p
- …
