23,121 research outputs found
Casting Light on Dark Matter
The prospects for detecting a candidate supersymmetric dark matter particle
at the LHC are reviewed, and compared with the prospects for direct and
indirect searches for astrophysical dark matter. The discussion is based on a
frequentist analysis of the preferred regions of the Minimal supersymmetric
extension of the Standard Model with universal soft supersymmetry breaking (the
CMSSM). LHC searches may have good chances to observe supersymmetry in the near
future - and so may direct searches for astrophysical dark matter particles,
whereas indirect searches may require greater sensitivity, at least within the
CMSSM.Comment: 16 pages, 13 figures, contribution to the proceedings of the LEAP
2011 Conferenc
Single spin asymmetry for the Drell-Yan process
We calculated the single spin asymmetries for the reaction
in the framework of twist-3 QCD for
HERA energies. The necessary imaginary phase is produced by the on-shell
contribution of the quark propagator, while the long distance part is analogous
to that providing the direct photon asymmetry calculated by J. Qiu and G.
Sterman. The asymmetry turns out to be generally of the order percent.Comment: 7 pages, 4 figures, LaTe
Exact non-equilibrium solutions of the Einstein-Boltzmann equations. II
We find exact solutions of the Einstein-Boltzmann equations with relaxational
collision term in FRW and Bianchi I spacetimes. The kinematic and thermodynamic
properties of the solutions are investigated. We give an exact expression for
the bulk viscous pressure of an FRW distribution that relaxes towards
collision-dominated equilibrium. If the relaxation is toward collision-free
equilibrium, the bulk viscosity vanishes - but there is still entropy
production. The Bianchi I solutions have zero heat flux and bulk viscosity, but
nonzero shear viscosity. The solutions are used to construct a realisation of
the Weyl Curvature Hypothesis.Comment: 16 pages LaTex, CQG documentstyle (ioplppt
Longitudinal Strain Pulse Propagation in Wide Rectangular Bars: Part 2—Experimental Observations and Comparisons With Theory
The plane-stress theory presented in Part 1 is shown to predict qualitatively the warping of plane sections observed in transient fringe patterns obtained using birefringent coatings and in dynamic photoelastic pictures obtained in other investigations. Measurements using conventional techniques are described in which wide rectangular bars were subjected to a longitudinal step-function pressure loading produced by a shock tube. Comparisons show that the gross features of the experimental records for the head of the pulse are qualitatively predicted by the theory. Both theory and experiment show that short-wavelength, second-mode disturbances arrive very early. Experimentally it is observed that these disturbances are accomplished by thickness-mode activity which cannot be accounted for by the plane-stress theory
Revisiting the Higgs Mass and Dark Matter in the CMSSM
Taking into account the available accelerator and astrophysical constraints,
the mass of the lightest neutral Higgs boson h in the minimal supersymmetric
extension of the Standard Model with universal soft supersymmetry-breaking
masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data
from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a
possibility. Here we study the consequences for the parameters of the CMSSM and
direct dark matter detection if the Higgs hint is confirmed, focusing on the
strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the
relic density of the lightest neutralino chi falls within the range of the
cosmological cold dark matter density allowed by WMAP and other experiments. We
find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would
the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the
stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured,
together with its extension to a funnel where rapid annihilation via
direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more
options would be open. We give parametrizations of WMAP strips with large tan
beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV,
and present predictions for spin-independent elastic dark matter scattering
along these strips. These are generally low for models compatible with m_h =
125 GeV, whereas the XENON100 experiment already excludes some portions of
strips where m_h is smaller.Comment: 24 pages, 9 figure
Collider Interplay for Supersymmetry, Higgs and Dark Matter
We discuss the potential impacts on the CMSSM of future LHC runs and possible
electron-positron and higher-energy proton-proton colliders, considering
searches for supersymmetry via MET events, precision electroweak physics, Higgs
measurements and dark matter searches. We validate and present estimates of the
physics reach for exclusion or discovery of supersymmetry via MET searches at
the LHC, which should cover the low-mass regions of the CMSSM parameter space
favoured in a recent global analysis. As we illustrate with a low-mass
benchmark point, a discovery would make possible accurate LHC measurements of
sparticle masses using the MT2 variable, which could be combined with
cross-section and other measurements to constrain the gluino, squark and stop
masses and hence the soft supersymmetry-breaking parameters m_0, m_{1/2} and
A_0 of the CMSSM. Slepton measurements at CLIC would enable m_0 and m_{1/2} to
be determined with high precision. If supersymmetry is indeed discovered in the
low-mass region, precision electroweak and Higgs measurements with a future
circular electron-positron collider (FCC-ee, also known as TLEP) combined with
LHC measurements would provide tests of the CMSSM at the loop level. If
supersymmetry is not discovered at the LHC, is likely to lie somewhere along a
focus-point, stop coannihilation strip or direct-channel A/H resonance funnel.
We discuss the prospects for discovering supersymmetry along these strips at a
future circular proton-proton collider such as FCC-hh. Illustrative benchmark
points on these strips indicate that also in this case FCC-ee could provide
tests of the CMSSM at the loop level.Comment: 47 pages, 26 figure
On Shear-Free perturbations of FLRW Universes
A surprising exact result for the Einstein Field Equations is that if
pressure-free matter is moving in a shear-free way, then it must be either
expansion-free or rotation-free. It has been suggested this result is also true
for any barotropic perfect fluid, but a proof has remained elusive. We consider
the case of barotropic perfect fluid solutions linearized about a
Robertson-Walker geometry, and prove that the result remains true except for
the case of a specific highly non-linear equation of state. We argue that this
equation of state is non-physical, and hence the result is true in the
linearized case for all physically realistic barotropic perfect fluids. This
result, which is not true in Newtonian cosmology, demonstrates that the
linearized solutions, believed to result in standard local Newtonian theory, do
not always give the usual behaviour of Newtonian solutions
The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson's disease
Published in final edited form as:
Mov Disord. 2016 January ; 31(1): 23–38. doi:10.1002/mds.26484.In addition to the classic motor symptoms, Parkinson's disease (PD) is associated with a variety of nonmotor symptoms that significantly reduce quality of life, even in the early stages of the disease. There is an urgent need to develop evidence‐based treatments for these symptoms, which include mood disturbances, cognitive dysfunction, and sleep disruption. We focus here on exercise interventions, which have been used to improve mood, cognition, and sleep in healthy older adults and clinical populations, but to date have primarily targeted motor symptoms in PD. We synthesize the existing literature on the benefits of aerobic exercise and strength training on mood, sleep, and cognition as demonstrated in healthy older adults and adults with PD, and suggest that these types of exercise offer a feasible and promising adjunct treatment for mood, cognition, and sleep difficulties in PD. Across stages of the disease, exercise interventions represent a treatment strategy with the unique ability to improve a range of nonmotor symptoms while also alleviating the classic motor symptoms of the disease. Future research in PD should include nonmotor outcomes in exercise trials with the goal of developing evidence‐based exercise interventions as a safe, broad‐spectrum treatment approach to improve mood, cognition, and sleep for individuals with PD.This work was supported by the National Institute of Mental Health (F31MH102961 to G.O.R.)
- …
