1,610 research outputs found
A L\'evy input fluid queue with input and workload regulation
We consider a queuing model with the workload evolving between consecutive
i.i.d.\ exponential timers according to a
spectrally positive L\'evy process that is reflected at zero, and
where the environment equals 0 or 1. When the exponential clock
ends, the workload, as well as the L\'evy input process, are modified; this
modification may depend on the current value of the workload, the maximum and
the minimum workload observed during the previous cycle, and the environment
of the L\'evy input process itself during the previous cycle. We analyse
the steady-state workload distribution for this model. The main theme of the
analysis is the systematic application of non-trivial functionals, derived
within the framework of fluctuation theory of L\'evy processes, to workload and
queuing models
Advancing Alternative Analysis: Integration of Decision Science.
Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts
Cross-correlating Carbon Monoxide Line-intensity Maps with Spectroscopic and Photometric Galaxy Surveys
Line-intensity mapping (LIM or IM) is an emerging field of observational
work, with strong potential to fit into a larger effort to probe large-scale
structure and small-scale astrophysical phenomena using multiple complementary
tracers. Taking full advantage of such complementarity means, in part,
undertaking line-intensity surveys with galaxy surveys in mind. We consider the
potential for detection of a cross-correlation signal between COMAP and blind
surveys based on photometric redshifts (as in COSMOS) or based on spectroscopic
data (as with the HETDEX survey of Lyman- emitters). We find that
obtaining accuracy in redshifts and
sources per Mpc with spectroscopic redshift determination
should enable a CO-galaxy cross spectrum detection significance at least twice
that of the CO auto spectrum. Either a future targeted spectroscopic survey or
a blind survey like HETDEX may be able to meet both of these requirements.Comment: 19 pages + appendix (31 pages total), 16 figures, 6 tables; accepted
for publication in Ap
Variable Curvature Slab Molecular Dynamics as a Method to Determine Surface Stress
A thin plate or slab, prepared so that opposite faces have different surface
stresses, will bend as a result of the stress difference. We have developed a
classical molecular dynamics (MD) formulation where (similar in spirit to
constant-pressure MD) the curvature of the slab enters as an additional
dynamical degree of freedom. The equations of motion of the atoms have been
modified according to a variable metric, and an additional equation of motion
for the curvature is introduced. We demonstrate the method to Au surfaces, both
clean and covered with Pb adsorbates, using many-body glue potentials.
Applications to stepped surfaces, deconstruction and other surface phenomena
are under study.Comment: 16 pages, 8 figures, REVTeX, submitted to Physical Review
Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics
A method to couple interparticle contact models with Stokesian dynamics (SD)
is introduced to simulate colloidal aggregates under flow conditions. The
contact model mimics both the elastic and plastic behavior of the cohesive
connections between particles within clusters. Owing to this, clusters can
maintain their structures under low stress while restructuring or even breakage
may occur under sufficiently high stress conditions. SD is an efficient method
to deal with the long-ranged and many-body nature of hydrodynamic interactions
for low Reynolds number flows. By using such a coupled model, the restructuring
of colloidal aggregates under stepwise increasing shear flows was studied.
Irreversible compaction occurs due to the increase of hydrodynamic stress on
clusters. Results show that the greater part of the fractal clusters are
compacted to rod-shaped packed structures, while the others show isotropic
compaction.Comment: A simulation movie be found at
http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm
Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches
The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless
double-beta decay of Xe-136 using high-pressure xenon gas TPCs with
electroluminescent amplification. A scaled-up version of this technology with
about 1 tonne of enriched xenon could reach in less than 5 years of operation a
sensitivity to the half-life of neutrinoless double-beta decay decay better
than 1E27 years, improving the current limits by at least one order of
magnitude. This prediction is based on a well-understood background model
dominated by radiogenic sources. The detector concept presented here represents
a first step on a compelling path towards sensitivity to the parameter space
defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
Organizational adaption to changes in public objectives for management of Cache La Poudre River system
Research Period: 1965-1969.June 30, 1969.Submitted to Office of Water Resources Research, U.S. Department of Interior.Project A-005-COLO, Grant agreement no. 14-01-0001-1625
- …
