205 research outputs found

    Levy Flights in Inhomogeneous Media

    Full text link
    We investigate the impact of external periodic potentials on superdiffusive random walks known as Levy flights and show that even strongly superdiffusive transport is substantially affected by the external field. Unlike ordinary random walks, Levy flights are surprisingly sensitive to the shape of the potential while their asymptotic behavior ceases to depend on the Levy index μ\mu . Our analysis is based on a novel generalization of the Fokker-Planck equation suitable for systems in thermal equilibrium. Thus, the results presented are applicable to the large class of situations in which superdiffusion is caused by topological complexity, such as diffusion on folded polymers and scale-free networks.Comment: 4 pages, 4 figure

    Particle Dispersion on Rapidly Folding Random Hetero-Polymers

    Full text link
    We investigate the dynamics of a particle moving randomly along a disordered hetero-polymer subjected to rapid conformational changes which induce superdiffusive motion in chemical coordinates. We study the antagonistic interplay between the enhanced diffusion and the quenched disorder. The dispersion speed exhibits universal behavior independent of the folding statistics. On the other hand it is strongly affected by the structure of the disordered potential. The results may serve as a reference point for a number of translocation phenomena observed in biological cells, such as protein dynamics on DNA strands.Comment: 4 pages, 4 figure

    Stochastic Energetics of Quantum Transport

    Get PDF
    We examine the stochastic energetics of directed quantum transport due to rectification of non-equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conventional efficiency being independent of the nature of the bath and the potential remains the same for classical and quantum systems.Comment: To be published in Phys. Rev.

    Equilibrium and dynamical properties of two dimensional self-gravitating systems

    Full text link
    A system of N classical particles in a 2D periodic cell interacting via long-range attractive potential is studied. For low energy density UU a collapsed phase is identified, while in the high energy limit the particles are homogeneously distributed. A phase transition from the collapsed to the homogeneous state occurs at critical energy U_c. A theoretical analysis within the canonical ensemble identifies such a transition as first order. But microcanonical simulations reveal a negative specific heat regime near UcU_c. The dynamical behaviour of the system is affected by this transition : below U_c anomalous diffusion is observed, while for U > U_c the motion of the particles is almost ballistic. In the collapsed phase, finite NN-effects act like a noise source of variance O(1/N), that restores normal diffusion on a time scale diverging with N. As a consequence, the asymptotic diffusion coefficient will also diverge algebraically with N and superdiffusion will be observable at any time in the limit N \to \infty. A Lyapunov analysis reveals that for U > U_c the maximal exponent \lambda decreases proportionally to N^{-1/3} and vanishes in the mean-field limit. For sufficiently small energy, in spite of a clear non ergodicity of the system, a common scaling law \lambda \propto U^{1/2} is observed for any initial conditions.Comment: 17 pages, Revtex - 15 PS Figs - Subimitted to Physical Review E - Two column version with included figures : less paper waste

    Bloch Electrons in a Magnetic Field - Why Does Chaos Send Electrons the Hard Way?

    Full text link
    We find that a 2D periodic potential with different modulation amplitudes in x- and y-direction and a perpendicular magnetic field may lead to a transition to electron transport along the direction of stronger modulation and to localization in the direction of weaker modulation. In the experimentally accessible regime we relate this new quantum transport phenomenon to avoided band crossing due to classical chaos.Comment: 4 pages, 3 figures, minor modifications, PRL to appea

    Signature of Chaotic Diffusion in Band Spectra

    Full text link
    We investigate the two-point correlations in the band spectra of spatially periodic systems that exhibit chaotic diffusion in the classical limit. By including level pairs pertaining to non-identical quasimomenta, we define form factors with the winding number as a spatial argument. For times smaller than the Heisenberg time, they are related to the full space-time dependence of the classical diffusion propagator. They approach constant asymptotes via a regime, reflecting quantal ballistic motion, where they decay by a factor proportional to the number of unit cells. We derive a universal scaling function for the long-time behaviour. Our results are substantiated by a numerical study of the kicked rotor on a torus and a quasi-one-dimensional billiard chain.Comment: 8 pages, REVTeX, 5 figures (eps

    Quantum localization and cantori in chaotic billiards

    Full text link
    We study the quantum behaviour of the stadium billiard. We discuss how the interplay between quantum localization and the rich structure of the classical phase space influences the quantum dynamics. The analysis of this model leads to new insight in the understanding of quantum properties of classically chaotic systems.Comment: 4 pages in RevTex with 4 eps figures include

    Resonance- and Chaos-Assisted Tunneling

    Full text link
    We consider dynamical tunneling between two symmetry-related regular islands that are separated in phase space by a chaotic sea. Such tunneling processes are dominantly governed by nonlinear resonances, which induce a coupling mechanism between ``regular'' quantum states within and ``chaotic'' states outside the islands. By means of a random matrix ansatz for the chaotic part of the Hamiltonian, one can show that the corresponding coupling matrix element directly determines the level splitting between the symmetric and the antisymmetric eigenstates of the pair of islands. We show in detail how this matrix element can be expressed in terms of elementary classical quantities that are associated with the resonance. The validity of this theory is demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure

    Hall conductance of Bloch electrons in a magnetic field

    Full text link
    We study the energy spectrum and the quantized Hall conductance of electrons in a two-dimensional periodic potential with perpendicular magnetic field WITHOUT neglecting the coupling of the Landau bands. Remarkably, even for weak Landau band coupling significant changes in the Hall conductance compared to the one-band approximation of Hofstadter's butterfly are found. The principal deviations are the rearrangement of subbands and unexpected subband contributions to the Hall conductance.Comment: to appear in PRB; Revtex, 9 pages, 5 postscript figures; figures with better resolution may be obtained from http://www.chaos.gwdg.d

    New Class of Eigenstates in Generic Hamiltonian Systems

    Full text link
    In mixed systems, besides regular and chaotic states, there are states supported by the chaotic region mainly living in the vicinity of the hierarchy of regular islands. We show that the fraction of these hierarchical states scales as α\hbar^{-\alpha} and relate the exponent α=11/γ\alpha=1-1/\gamma to the decay of the classical staying probability P(t)tγP(t)\sim t^{-\gamma}. This is numerically confirmed for the kicked rotor by studying the influence of hierarchical states on eigenfunction and level statistics.Comment: 4 pages, 3 figures, Phys. Rev. Lett., to appea
    corecore