958 research outputs found

    Superconductivity in the Kondo lattice model

    Full text link
    We study the Kondo lattice model with additional attractive interaction between the conduction electrons within the dynamical mean-field theory using the numerical renormalization group to solve the effective quantum impurity problem. In addition to normal-state and magnetic phases we also allow for the occurrence of a superconducting phase. In the normal phase we observe a very sensitive dependence of the low-energy scale on the conduction-electron interaction. We discuss the dependence of the superconducting transition on the interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding

    Anomalous Normal-State Properties of High-Tc_c Superconductors -- Intrinsic Properties of Strongly Correlated Electron Systems?

    Full text link
    A systematic study of optical and transport properties of the Hubbard model, based on Metzner and Vollhardt's dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one), and also compare qualitatively with many anomalous transport features of the high-Tc_c cuprates. This anomalous behavior of the normal-state properties is traced to a ``collective single-band Kondo effect,'' in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.Comment: 27 pages, latex, 13 figures, Invited for publication in Advances in Physic

    Band Calculation for Ce-compounds on the basis of Dynamical Mean Field Theory

    Full text link
    The band calculation scheme for ff electron compounds is developed on the basis of the dynamical mean field theory (DMFT) and the LMTO method. The auxiliary impurity problem is solved by a method named as NCAf2f^{2}v', which includes the correct exchange process of the f1f2f^{1} \to f^{2} virtual excitation as the vertex correction to the non-crossing approximation (NCA) for the f1f0f^{1} \to f^{0} fluctuation. This method leads to the correct magnitude of the Kondo temperature, TKT_{\rm K}, and makes it possible to carry out quantitative DMFT calculation including the crystalline field (CF) and the spin-orbit (SO) splitting of the self-energy. The magnetic excitation spectra are also calculated to estimate TKT_{\rm K}. It is applied to Ce metal and CeSb at T=300 K as the first step. In Ce metal, the hybridization intensity (HI) just below the Fermi energy is reduced in the DMFT band. The photo-emission spectra (PES) have a conspicuous SO side peak, similar to that of experiments. TKT_{\rm K} is estimated to be about 70 K in γ\gamma-Ce, while to be about 1700 K in α\alpha-Ce. In CeSb, the double-peak-like structure of PES is reproduced. In addition, TKT_{\rm K} which is not so low is obtained because HI is enhanced just at the Fermi energy in the DMFT band.Comment: 30pages, 18 figure

    Unified description of Fermi and non-Fermi liquid behavior in a conserving slave boson approximation for strongly correlated impurity models

    Full text link
    We show that the presence of Fermi or non-Fermi liquid behavior in the SU(N) x SU(M) Anderson impurity models may be read off the infrared threshold exponents governing the spinon and holon dynamics in a slave boson representation of these models. We construct a conserving T-matrix approximation which recovers the exact exponents with good numerical accuracy. Our approximation includes both coherent spin flip scattering and charge fluctuation processes. For the single-channel case the tendency to form bound states drastically modifies the low energy behavior. For the multi-channel case in the Kondo limit the bound state contributions are unimportant.Comment: 4 pages, Latex, 3 postscript figures included Final version with minor changes in wording, to appear in Phys.Rev.Let

    Investigation of the Two-Particle-Self-Consistent Theory for the Single-Impurity Anderson Model and an Extension to the Case of Strong Correlation

    Get PDF
    The two-particle-self-consistent theory is applied to the single-impurity Anderson model. It is found that it cannot reproduce the small energy scale in the strong correlation limit. A modified scheme to overcome this difficulty is proposed by introducing an appropriate vertex correction explicitly. Using the same vertex correction, the self-energy is investigated, and it is found that under certain assumptions it reproduces the result of the modified perturbation theory which interpolates the weak and the strong correlation limits.Comment: 5 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Phase Diagram of the Two-Channel Kondo Lattice

    Full text link
    The phase diagram of the two-channel Kondo lattice model is examined with a Quantum Monte Carlo simulation in the limit of infinite dimensions. Commensurate (and incommensurate) antiferromagnetic and superconducting states are found. The antiferromagnetic transition is very weak and continuous; whereas the superconducting transition is discontinuous to an odd-frequency channel-singlet and spin-singlet pairing state.Comment: 5 pages, LaTeX and 4 PS figures (see also cond-mat/9609146 and cond-mat/9605109

    Zeros of the Partition Function and Pseudospinodals in Long-Range Ising Models

    Full text link
    The relation between the zeros of the partition function and spinodal critical points in Ising models with long-range interactions is investigated. We find the spinodal is associated with the zeros of the partition function in four-dimensional complex temperature/magnetic field space. The zeros approach the real temperature/magnetic field plane as the range of interaction increases.Comment: 20 pages, 9 figures, accepted to PR

    Kondo-lattice model: Application to the temperature-dependent electronic structure of EuO(100) films

    Full text link
    We present calculations for the temperature-dependent electronic structure and magnetic properties of thin ferromagnetic EuO films. The treatment is based on a combination of a multiband-Kondo lattice model with first-principles TB-LMTO band structure calculations. The method avoids the problem of double-counting of relevant interactions and takes into account the correct symmetry of the atomic orbitals. We discuss the temperature-dependent electronic structures of EuO(100) films in terms of quasiparticle densities of states and quasiparticle band structures. The Curie temperature T_C of the EuO films turns out to be strongly thickness-dependent, starting from a very low value = 15K for the monolayer and reaching the bulk value at about 25 layers

    The Kondo Box: A Magnetic Impurity in an Ultrasmall Metallic Grain

    Full text link
    We study the Kondo effect generated by a single magnetic impurity embedded in an ultrasmall metallic grain, to be called a ``Kondo box''. We find that the Kondo resonance is strongly affected when the mean level spacing in the grain becomes larger than the Kondo temperature, in a way that depends on the parity of the number of electrons on the grain. We show that the single-electron tunneling conductance through such a grain features Kondo-induced Fano-type resonances of measurable size, with an anomalous dependence on temperature and level spacing.Comment: 4 Latex pages, 4 figures, submitted to Phys. Rev. Let

    Slow crossover in YbXCu4 intermediate valence compounds

    Full text link
    We compare the results of measurements of the magnetic susceptibility Chi(T), the linear coefficient of specific heat Gamma(T)=C(T)/T and 4f occupation number nf(T) for the intermediate valence compounds YbXCu4 (X = Ag, Cd, In, Mg, Tl, Zn) to the predictions of the Anderson impurity model, calculated in the non-crossing approximation (NCA). The crossover from the low temperature Fermi liquid state to the high temperature local moment state is substantially slower in the compounds than predicted by the NCA; this corresponds to the ''protracted screening'' recently predicted for the Anderson Lattice. We present results for the dynamic susceptibility, measured through neutron scattering experiments, to show that the deviations between theory and experiment are not due to crystal field effects, and we present x-ray-absorption fine-structure (XAFS) results that show the local crystal structure around the X atoms is well ordered, so that the deviations probably do not arise from Kondo Disorder. The deviations may correlate with the background conduction electron density, as predicted for protracted screening.Comment: Submitted to Physical Review B on June 7, 2000, accepted for publication November 2, 2000. Changes to the original manuscript include: 1) a discussion of the relation of the slow crossover to the conduction electron density; 2) a discussion of the relation of the reported results to earlier photoemission results; and, 3) minor editorial change
    corecore