3,331 research outputs found
TUGS: I feel what you see
This article identifies how navigation aids can assist a wide range of visually impaired individuals, particularly focussing on the currently available GPS (Global Positioning Satellite) linked mobile technology systems. Some of the problems with these systems are identified (audio messaging masking critical ambient sound signals) and describes the design and development of a passive tactile interface, which uses the body as the method of communicating navigational information to the user
TUGS – The tactile user guidance system
The Electronic System and Information Technology Research Group at Brunel University has designed a multifaceted navigation system for blind and visually impaired pedestrians. The primary operation of the system mimics the advantages of an informed sighted guide by using Global Positioning Systems and remote (sighted on the user) video cameras as navigational sensors. The information generated is streamed to a central control centre. This allows the system to operate in a fully automatic or operator assisted mode dependent on the users requirements. Initially the system used an audio link to transfer information to the user, however this has proved problematic. Clear unimpeded access to ambient sound is vital for visually impaired and blind pedestrians, both for efficient wayfinding and safety. Any system which has a continuing dialogue with the user, for example, navigational instructions received through an audio link, interferes with the users ability to process ambient sounds. To solve this problem a novel Tactile User Guidance System (TUGS) with vibrating actuators, has been designed and experimentally tested.
In this paper we present the design and experimental verification of TUGS with both visually impaired and sighted users. Although we have taken the visually impaired user as the ‘worst case scenario’ a practical ability to transfer information through the tactile sense has considerable value to other groups who may find themselves in restricted or overloaded visual or audio situations. These groups include; front line responders in the emergency services, railroad workers, pilots and remote vehicle operators
Search for axion-like particles using a variable baseline photon regeneration technique
We report the first results of the GammeV experiment, a search for milli-eV
mass particles with axion-like couplings to two photons. The search is
performed using a "light shining through a wall" technique where incident
photons oscillate into new weakly interacting particles that are able to pass
through the wall and subsequently regenerate back into detectable photons. The
oscillation baseline of the apparatus is variable, thus allowing probes of
different values of particle mass. We find no excess of events above background
and are able to constrain the two-photon couplings of possible new scalar
(pseudoscalar) particles to be less than 3.1x10^{-7} GeV^{-1} (3.5x10^{-7}
GeV^{-1}) in the limit of massless particles.Comment: 5 pages, 4 figures. This is the version accepted by PRL and includes
updated limit
Efficient implementation of finite volume methods in Numerical Relativity
Centered finite volume methods are considered in the context of Numerical
Relativity. A specific formulation is presented, in which third-order space
accuracy is reached by using a piecewise-linear reconstruction. This
formulation can be interpreted as an 'adaptive viscosity' modification of
centered finite difference algorithms. These points are fully confirmed by 1D
black-hole simulations. In the 3D case, evidence is found that the use of a
conformal decomposition is a key ingredient for the robustness of black hole
numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.
Travelling waves for the Gross-Pitaevskii equation II
The purpose of this paper is to provide a rigorous mathematical proof of the
existence of travelling wave solutions to the Gross-Pitaevskii equation in
dimensions two and three. Our arguments, based on minimization under
constraints, yield a full branch of solutions, and extend earlier results,
where only a part of the branch was built. In dimension three, we also show
that there are no travelling wave solutions of small energy.Comment: Final version accepted for publication in Communications in
Mathematical Physics with a few minor corrections and added remark
Zeno Dynamics of von Neumann Algebras
The dynamical quantum Zeno effect is studied in the context of von Neumann
algebras. We identify a localized subalgebra on which the Zeno dynamics acts by
automorphisms. The Zeno dynamics coincides with the modular dynamics of that
subalgebra, if an additional assumption is satisfied. This relates the modular
operator of that subalgebra to the modular operator of the original algebra by
a variant of the Kato-Lie-Trotter product formula.Comment: Revised version; further typos corrected; 9 pages, AMSLaTe
Control sideband generation for dual-recycled laser interferometric gravitational wave detectors
We present a discussion of the problems associated with generation of multiple control sidebands for length sensing and control of dual-recycled, cavity-enhanced Michelson interferometers and the motivation behind more complicated sideband generation methods. We focus on the Mach–Zehnder interferometer as a topological solution to the problem and present results from tests carried out at the Caltech 40 m prototype gravitational wave detector. The consequences for sensing and control for advanced interferometry are discussed, as are the implications for future interferometers such as Advanced LIGO
Approach to equilibrium for a class of random quantum models of infinite range
We consider random generalizations of a quantum model of infinite range
introduced by Emch and Radin. The generalization allows a neat extension from
the class of absolutely summable lattice potentials to the optimal class
of square summable potentials first considered by Khanin and Sinai and
generalised by van Enter and van Hemmen. The approach to equilibrium in the
case of a Gaussian distribution is proved to be faster than for a Bernoulli
distribution for both short-range and long-range lattice potentials. While
exponential decay to equilibrium is excluded in the nonrandom case, it is
proved to occur for both short and long range potentials for Gaussian
distributions, and for potentials of class in the Bernoulli case. Open
problems are discussed.Comment: 10 pages, no figures. This last version, to appear in J. Stat. Phys.,
corrects some minor errors and includes additional references and comments on
the relation to experiment
Intermittency in Branching Processes
We study the intermittency properties of two branching processes, one with a
uniform and another with a singular splitting kernel. The asymptotic
intermittency indices, as well as the leading corrections to the asymptotic
linear regime are explicitly computed in an analytic framework. Both models are
found to possess a monofractal spectrum with . Relations with
previous results are discussed.Comment: 20 pages, UCLA93/TEP/2
Coherent Parton Showers with Local Recoils
We outline a new formalism for dipole-type parton showers which maintain
exact energy-momentum conservation at each step of the evolution. Particular
emphasis is put on the coherence properties, the level at which recoil effects
do enter and the role of transverse momentum generation from initial state
radiation. The formulated algorithm is shown to correctly incorporate coherence
for soft gluon radiation. Furthermore, it is well suited for easing matching to
next-to-leading order calculations.Comment: 24 pages, 3 figure
- …
