14,223 research outputs found
Sums and differences of four k-th powers
We prove an upper bound for the number of representations of a positive
integer as the sum of four -th powers of integers of size at most ,
using a new version of the Determinant method developed by Heath-Brown, along
with recent results by Salberger on the density of integral points on affine
surfaces. More generally we consider representations by any integral diagonal
form. The upper bound has the form , whereas earlier
versions of the Determinant method would produce an exponent for of order
in this case. Furthermore, we prove that the number of
representations of a positive integer as a sum of four -th powers of
non-negative integers is at most for
, improving upon bounds by Wisdom.Comment: 18 pages. Mistake corrected in the statement of Theorem 1.2. To
appear in Monatsh. Mat
The Microscopic Structure of Adsorbed Water on Hydrophobic Surfaces under Ambient Conditions
The interaction of water vapor with hydrophobic surfaces is poorly understood. We utilize graphene templating to preserve and visualize the microscopic structures of adsorbed water on hydrophobic surfaces. Three well-defined surfaces [H–Si(111), graphite, and functionalized mica] were investigated, and water was found to adsorb as nanodroplets (~10–100 nm in size) on all three surfaces under ambient conditions. The adsorbed nanodroplets were closely associated with atomic-scale surface defects and step-edges and wetted all the hydrophobic substrates with contact angles < ~10°, resulting in total water adsorption that was similar to what is found for hydrophilic surfaces. These results point to the significant differences between surface processes at the atomic/nanometer scales and in the macroscopic world
International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1) pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE
The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future
The Mass Power Spectrum in Quintessence Cosmological Models
We present simple analytic approximations for the linear and fully evolved
nonlinear mass power spectrum for spatially flat cold dark matter (CDM)
cosmological models with quintessence (Q). Quintessence is a time evolving,
spatially inhomogeneous energy component with negative pressure and an equation
of state w_Q < 0. It clusters gravitationally on large length scales but
remains smooth like the cosmological constant on small length scales. We show
that the clustering scale is determined by the Compton wavelength of the
Q-field and derive a shape parameter, \Gamma_Q, to characterize the linear mass
power spectrum. The growth of linear perturbations as functions of redshift,
w_Q, and matter density \Omega_m is also quantified. Calibrating to N-body
simulations, we construct a simple extension of the formula by Ma (1998) that
closely approximates the nonlinear power spectrum for a range of plausible QCDM
models.Comment: 5 pages with 3 inserted postscript figures, AAS LaTeX v4.0
emulateapj.sty. Astrophysical Journal Letters, in pres
Modelling the Northeast Atlantic circulation : implications for the spring invasion of shelf regions by Calanus finmarchicus
The appearance in spring of the copepod Calanus finmarchicus in continental shelf waters of the northeastern Atlantic has been hypothesized to be mainly attributable to invasion from across the continental slope rather than in situ overwintering. This paper describes the application of a hydrodynamic circulation model and a particle-tracking model to Northeast Atlantic waters in order to assess the influence of the flow field and ascent migration parameters on the spring invasion of C. finmarchicus. For hydrodynamic modelling, the Hamburg Shelf-Ocean Model (HAMSOM) was applied to the North Atlantic and Nordic Seas and forced with daily mean atmospheric data. Simulated flow fields from HAMSOM serve as forcing functions for a particle-tracking model of the same region. The robustness of the simulated shelf invasion in three target boxes of the Northeast Atlantic Shelf was assessed by means of a sensitivity analysis with respect to variations in four key migration parameters: overwintering depth, ascent rate, ascent timing, and depth during residence in upper layers. The invasion of the northern North Sea and Norwegian Shelf waters is more sensitive to ascent migration parameters than invasion of the Faroese Shelf. The main reason for enhanced sensitivity of the North Sea invasion is the time and space-dependent flow structure in the Faroe-Shetland Channel. Dense aggregations of overwintering C. finmarchicus are found in the Channel, but because of the complex flow field only a proportion of the overwintering stock has the capacity to reach the North Sea
Which solar EUV indices are best for reconstructing the solar EUV irradiance ?
The solar EUV irradiance is of key importance for space weather. Most of the
time, however, surrogate quantities such as EUV indices have to be used by lack
of continuous and spectrally resolved measurements of the irradiance. The
ability of such proxies to reproduce the irradiance from different solar
atmospheric layers is usually investigated by comparing patterns of temporal
correlations. We consider instead a statistical approach. The TIMED/SEE
experiment, which has been continuously operating since Feb. 2002, allows for
the first time to compare in a statistical manner the EUV spectral irradiance
to five EUV proxies: the sunspot number, the f10.7, Ca K, and Mg II indices,
and the He I equivalent width.
Using multivariate statistical methods such as multidimensional scaling, we
represent in a single graph the measure of relatedness between these indices
and various strong spectral lines. The ability of each index to reproduce the
EUV irradiance is discussed; it is shown why so few lines can be effectively
reconstructed from them. All indices exhibit comparable performance, apart from
the sunspot number, which is the least appropriate. No single index can
satisfactorily describe both the level of variability on time scales beyond 27
days, and relative changes of irradiance on shorter time scales.Comment: 6 figures, to appear in Adv. Space. Re
Adaptive Resolution Simulation of Liquid Water
We present a multiscale simulation of liquid water where a spatially adaptive
molecular resolution procedure allows for changing on-the-fly from a
coarse-grained to an all-atom representation. We show that this approach leads
to the correct description of all essential thermodynamic and structural
properties of liquid water.Comment: 4 pages, 3 figures; changed figure
Current Profiles of Molecular Nanowires; DFT Green Function Representation
The Liouville-space Green function formalism is used to compute the current
density profile across a single molecule attached to electrodes. Time ordering
is maintained in real, physical, time, avoiding the use of artificial time
loops and backward propagations. Closed expressions for molecular currents,
which only require DFT calculations for the isolated molecule, are derived to
fourth order in the molecule/electrode coupling.Comment: 21 page
Periodic harmonic functions on lattices and points count in positive characteristic
This survey addresses pluri-periodic harmonic functions on lattices with
values in a positive characteristic field. We mention, as a motivation, the
game "Lights Out" following the work of Sutner, Goldwasser-Klostermeyer-Ware,
Barua-Ramakrishnan-Sarkar, Hunzikel-Machiavello-Park e.a.; see also 2 previous
author's preprints for a more detailed account. Our approach explores harmonic
analysis and algebraic geometry over a positive characteristic field. The
Fourier transform allows us to interpret pluri-periods of harmonic functions on
lattices as torsion multi-orders of points on the corresponding affine
algebraic variety.Comment: These are notes on 13p. based on a talk presented during the meeting
"Analysis on Graphs and Fractals", the Cardiff University, 29 May-2 June 2007
(a sattelite meeting of the programme "Analysis on Graphs and its
Applications" at the Isaac Newton Institute from 8 January to 29 June 2007
- …
