1,713 research outputs found
Development of the algorithm for aircraft control at inaccurate measurement of the state vector and variable accuracy parameter
A parametric method of the synthesis of control in the closed circuit, taking into account explicitly generalized error of the inertial module, is presented. The law of control in the form of analytical formulas is typically assigned to the control program and does not change during flight of an unmanned aerial vehicle. This decreases the capabilities of the autonomous flight control system to overcome control errors, which occur for various reasons. To verify assumptions about a possibility of improving the accuracy of an aerial vehicle control by the data of the strapdown inertial navigation system on a certain time interval of autonomous operation, the calculation experiment was conducted with the use of the developed software complex, simulating operation of the automatic flight control system. Parametrization of the law of control is considered as the main contribution (the outcome). Introduction of the parameter made it possible to decrease a negative impact of measurement errors and other disturbing factors on accuracy of reaching by the point of flight destination. Through computer modeling, it was shown that it is possible to decrease the impact of a generalized measurement error on generation of values of control functions by changing the value of the parameter. Analytical expressions for the estimation of accuracy of automatic control at the known generalized error of the inertial module and limited disturbing influences were obtained. After analyzing the influence of these factors on accuracy of the object control, a set of recommendations on selection of a variable parameter of synthesis of control depending on precision level of the sensors, used in the inertial module of measuring sensors, was generated.Розглянуто розв’язання термінальної задачі управління та синтезований параметризований закон управління в аналітичному вигляді, який залежить від змінного параметра глибини прогнозу. Досліджено особливості впливу величини параметра управління на точність досягнення кінцевої точки, дані рекомендації з вибору параметра для нівелювання помилки інерційних вимірювань. Синтез управління здійснюється методом переслідування ведучої точки за інформацією, отриманою інтегруванням вимірювань фактичного прискорення і містить помилку, характерну для акселерометрів
Spin ice in a field: quasi-phases and pseudo-transitions
Thermodynamics of the short-range model of spin ice magnets in a field is
considered in the Bethe - Peierls approximation. The results obtained for
[111], [100] and [011] fields agrees reasonably well with the existing
Monte-Carlo simulations and some experiments. In this approximation all
extremely sharp field-induced anomalies are described by the analytical
functions of temperature and applied field. In spite of the absence of true
phase transitions the analysis of the entropy and specific heat reliefs over
H-T plane allows to discern the "pseudo-phases" with specific character of spin
fluctuations and define the lines of more or less sharp "pseudo-transitions"
between them.Comment: 18 pages, 16 figure
Rigorous Analysis of Singularities and Absence of Analytic Continuation at First Order Phase Transition Points in Lattice Spin Models
We report about two new rigorous results on the non-analytic properties of
thermodynamic potentials at first order phase transition. The first one is
valid for lattice models () with arbitrary finite state space, and
finite-range interactions which have two ground states. Under the only
assumption that the Peierls Condition is satisfied for the ground states and
that the temperature is sufficiently low, we prove that the pressure has no
analytic continuation at the first order phase transition point. The second
result concerns Ising spins with Kac potentials
, where is a small scaling
parameter, and a fixed finite range potential. In this framework, we
relate the non-analytic behaviour of the pressure at the transition point to
the range of interaction, which equals . Our analysis exhibits a
crossover between the non-analytic behaviour of finite range models
() and analyticity in the mean field limit (). In
general, the basic mechanism responsible for the appearance of a singularity
blocking the analytic continuation is that arbitrarily large droplets of the
other phase become stable at the transition point.Comment: 4 pages, 2 figure
Metastability and Nucleation for the Blume-Capel Model. Different mechanisms of transition
We study metastability and nucleation for the Blume-Capel model: a
ferromagnetic nearest neighbour two-dimensional lattice system with spin
variables taking values in -1,0,+1. We consider large but finite volume, small
fixed magnetic field h and chemical potential "lambda" in the limit of zero
temperature; we analyze the first excursion from the metastable -1
configuration to the stable +1 configuration. We compute the asymptotic
behaviour of the transition time and describe the typical tube of trajectories
during the transition. We show that, unexpectedly, the mechanism of transition
changes abruptly when the line h=2*lambda is crossed.Comment: 96 pages, 44 tex-figures, 7 postscript figure
Inverse problem for wave equation with sources and observations on disjoint sets
We consider an inverse problem for a hyperbolic partial differential equation
on a compact Riemannian manifold. Assuming that and are
two disjoint open subsets of the boundary of the manifold we define the
restricted Dirichlet-to-Neumann operator . This
operator corresponds the boundary measurements when we have smooth sources
supported on and the fields produced by these sources are observed
on . We show that when and are disjoint but
their closures intersect at least at one point, then the restricted
Dirichlet-to-Neumann operator determines the
Riemannian manifold and the metric on it up to an isometry. In the Euclidian
space, the result yields that an anisotropic wave speed inside a compact body
is determined, up to a natural coordinate transformations, by measurements on
the boundary of the body even when wave sources are kept away from receivers.
Moreover, we show that if we have three arbitrary non-empty open subsets
, and of the boundary, then the restricted
Dirichlet-to-Neumann operators for determine the Riemannian manifold to an isometry. Similar result is proven
also for the finite-time boundary measurements when the hyperbolic equation
satisfies an exact controllability condition
Exclusion statistics,operator algebras and Fock space representations
We study exclusion statistics within the second quantized approach. We
consider operator algebras with positive definite Fock space and restrict them
in a such a way that certain state vectors in Fock space are forbidden ab
initio.We describe three characteristic examples of such exclusion, namely
exclusion on the base space which is characterized by states with specific
constraint on quantum numbers belonging to base space M (e.g.
Calogero-Sutherland type of exclusion statistics), exclusion in the
single-oscillator Fock space, where some states in single oscillator Fock space
are forbidden (e.g. the Gentile realization of exclusion statistics) and a
combination of these two exclusions (e.g. Green's realization of para-Fermi
statistics). For these types of exclusions we discuss extended Haldane
statistics parameters g, recently introduced by two of us in Mod.Phys.Lett.A
11, 3081 (1996), and associated counting rules. Within these three types of
exclusions in Fock space the original Haldane exclusion statistics cannot be
realized.Comment: Latex,31 pages,no figures,to appear in J.Phys.A : Math.Ge
Thermoacoustic tomography with an arbitrary elliptic operator
Thermoacoustic tomography is a term for the inverse problem of determining of
one of initial conditions of a hyperbolic equation from boundary measurements.
In the past publications both stability estimates and convergent numerical
methods for this problem were obtained only under some restrictive conditions
imposed on the principal part of the elliptic operator. In this paper
logarithmic stability estimates are obatined for an arbitrary variable
principal part of that operator. Convergence of the Quasi-Reversibility Method
to the exact solution is also established for this case. Both complete and
incomplete data collection cases are considered.Comment: 16 page
A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
We consider a transmission wave equation in two embedded domains in ,
where the speed is in the inner domain and in the outer
domain. We prove a global Carleman inequality for this problem under the
hypothesis that the inner domain is strictly convex and . As a
consequence of this inequality, uniqueness and Lip- schitz stability are
obtained for the inverse problem of retrieving a stationary potential for the
wave equation with Dirichlet data and discontinuous principal coefficient from
a single time-dependent Neumann boundary measurement
Critical droplets in Metastable States of Probabilistic Cellular Automata
We consider the problem of metastability in a probabilistic cellular
automaton (PCA) with a parallel updating rule which is reversible with respect
to a Gibbs measure. The dynamical rules contain two parameters and
which resemble, but are not identical to, the inverse temperature and external
magnetic field in a ferromagnetic Ising model; in particular, the phase diagram
of the system has two stable phases when is large enough and is
zero, and a unique phase when is nonzero. When the system evolves, at small
positive values of , from an initial state with all spins down, the PCA
dynamics give rise to a transition from a metastable to a stable phase when a
droplet of the favored phase inside the metastable phase reaches a
critical size. We give heuristic arguments to estimate the critical size in the
limit of zero ``temperature'' (), as well as estimates of the
time required for the formation of such a droplet in a finite system. Monte
Carlo simulations give results in good agreement with the theoretical
predictions.Comment: 5 LaTeX picture
Parameter identification problems in the modelling of cell motility
We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree
- …
