302 research outputs found
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation
We use Planck data to detect the cross-correlation between the thermal
Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that
make up the the cosmic infrared background (CIB). We first perform a stacking
analysis towards Planck-confirmed galaxy clusters. We detect infrared emission
produced by dusty galaxies inside these clusters and demonstrate that the
infrared emission is about 50% more extended than the tSZ effect. Modelling the
emission with a Navarro--Frenk--White profile, we find that the radial profile
concentration parameter is . This indicates
that infrared galaxies in the outskirts of clusters have higher infrared flux
than cluster-core galaxies. We also study the cross-correlation between tSZ and
CIB anisotropies, following three alternative approaches based on power
spectrum analyses: (i) using a catalogue of confirmed clusters detected in
Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps;
and (iii) using cross-spectra between Planck frequency maps. With the three
different methods, we detect the tSZ-CIB cross-power spectrum at significance
levels of (i) 6 , (ii) 3 , and (iii) 4 . We model the
tSZ-CIB cross-correlation signature and compare predictions with the
measurements. The amplitude of the cross-correlation relative to the fiducial
model is . This result is consistent with
predictions for the tSZ-CIB cross-correlation assuming the best-fit
cosmological model from Planck 2015 results along with the tSZ and CIB scaling
relations.Comment: 18 pages, 16 figure
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
<i>Planck </i>intermediate results XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium
The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF), we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2 degrees (corresponding to 3.5 pc in length for a typical distance of 100 pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C-l(TE)/C-l(EE) ratio, reported in the power spectra analysis of the Planck 353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter
Planck intermediate results XIV : Dust emission at millimetre wavelengths in the Galactic plane
Peer reviewe
Planck intermediate results XXV : The Andromeda galaxy as seen by Planck
The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiral arms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (greater than or similar to 0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 mu m emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 mu m emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 +/- 1.0) K with a spectral index of 1.62 +/- 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M-circle dot yr(-1). We find a 2.3 sigma detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 +/- 0.3 Jy, which is in line with expectations from our Galaxy.Peer reviewe
Planck intermediate results. XXI. Comparison of polarized thermal emission from Galactic dust at 353 GHz with interstellar polarization in the visible
The Planck survey provides unprecedented full-sky coverage of the submillimetre polarized emission from Galactic dust. In addition to the information on the direction of the Galactic magnetic field, this also brings new constraints on the properties of dust. The dust grains that emit the radiation seen by Planck in the submillimetre also extinguish and polarize starlight in the visible. Comparison of the polarization of the emission and of the interstellar polarization on selected lines of sight probed by stars provides unique new diagnostics of the emission and light scattering properties of dust, and therefore of the important dust model parameters, composition, size, and shape. Using ancillary catalogues of interstellar polarization and extinction of starlight, we obtain the degree of polarization, p(V), and the optical depth in the V band to the star, tau(V). Toward these stars we measure the submillimetre polarized intensity, P-S, and total intensity, I-S,I- in the Planck 353 GHz channel. We compare the column density measure in the visible, E(B - V), with that inferred from the Planck product map of the submillimetre dust optical depth and compare the polarization direction (position angle) in the visible with that in the submillimetre. For those lines of sight through the di ff use interstellar medium with comparable values of the estimated column density and polarization directions close to orthogonal, we correlate properties in the submillimetre and visible to find two ratios, R-S/V = (P-S/I-S) = (p(V)/tau(V)) and R-P/p = P-S/p(V), the latter focusing directly on the polarization properties of the aligned grain population alone. We find R-S/V = 4.2, with statistical and systematic uncertainties 0.2 and 0.3, respectively, and R-P/p = 5.4 MJy sr(-1), with uncertainties 0.2 and 0.3 MJy sr(-1), respectively. Our estimate of R-S/V is compatible with predictions based on a range of polarizing dust models that have been developed for the di ff use interstellar medium. This estimate provides new empirical validation of many of the common underlying assumptions of the models, but is not yet very discriminating among them. However, our estimate of R-P/p is not compatible with predictions, which are too low by a factor of about 2.5. This more discriminating diagnostic, R-P/p, indicates that changes to the optical properties in the models of the aligned grain population are required. These new diagnostics, together with the spectral dependence in the submillimetre from Planck, will be important for constraining and understanding the full complexity of the grain models, and for interpreting the Planck thermal dust polarization and refinement of the separation of this contamination of the cosmic microwave background.Peer reviewe
Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization
Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10 degrees radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. The results are corrected for the chance correlation between the templates and the anisotropies of the cosmic microwave background. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky patch. Both indices are found to be remarkably constant over the sky. The mean values, 1.59 +/- 0.02 for polarization and 1.51 +/- 0.01 for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different (3.6 sigma). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky patches. We find that the mean SED increases for decreasing frequencies at v <60 GHz for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction (p) of the dust emission decreases by (21 +/- 6)% from 353 to 70 GHz. We discuss this result within the context of existing dust models. The decrease in p could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize the separation between Galactic and cosmological polarization.Peer reviewe
Planck Intermediate Results. XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands Observatories
We present the results of approximately three years of observations of Planck
Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands
observatories as part of the general optical follow-up programme undertaken by
the Planck collaboration. In total, 78 SZ sources are discussed. Deep-imaging
observations were obtained for most of these sources; spectroscopic
observations in either in long-slit or multi-object modes were obtained for
many. We effectively used 37.5 clear nights. We found optical counterparts for
73 of the 78 candidates. This sample includes 53 spectroscopic redshift
determinations, 20 of them obtained with a multi-object spectroscopic mode. The
sample contains new redshifts for 27 Planck clusters that were not included in
the first Planck SZ source catalogue (PSZ1).Comment: 15 pages, 14 figures, accepted for publication in A&
- …
