2,200 research outputs found
Scaling Approach to the Phase Diagram of Quantum Hall Systems
We present a simple classification of the different liquid and solid phases
of quantum Hall systems in the limit where the Coulomb interaction between the
electrons is significant, i.e. away from integral filling factors. This
classification, and a criterion for the validity of the mean-field
approximation in the charge-density-wave phase, is based on scaling arguments
concerning the effective interaction potential of electrons restricted to an
arbitrary Landau level. Finite-temperature effects are investigated within the
same formalism, and a good agreement with recent experiments is obtained.Comment: 4 pages, 3 figures; to be published in Europhys. Lett.; new version
contains more detailed description of finite-temperature effect
Physiological constrains on Sverdrup's Critical-Depth-Hypothesis: the influences of dark respiration and sinking
Discussions on the controls initiating the onset of the phytoplankton spring bloom in particular in the North Atlantic have since Sverdrup been dominated by the role of physical and biological drivers. Undoubtedly, these drivers play an important role in phytoplankton dynamics and thus the onset of the spring bloom. However, they neglect the cells ability to modify vital rates in response to changes in the external environment. In this study, we use a non-hydrostatic convection model coupled to an Individual-Based-Model to simulate changes phytoplankton cells during the transition from winter conditions as driven by convective mixing, and the onset of thermal stratification resulting in the spring bloom. The comparison between a simulation using a standard fixed rate approach in line with the original Sverdrup hypothesis and a simulation parameterized to include variable respiration and sinking rates showed that the latter approach was able to capture the observed phytoplankton concentration during deep convective mixing, the timing and magnitude of the spring bloom as well as simulating realistic physiological rates. In contrast, the model employing fixed rate parameterizations could only replicate field observations when employing unrealistic parameter values. These results highlight the necessity to consider not only the physical and biological external controls determining phytoplankton dynamics but also the cells ability to modify critical physiological rates in response to external constraints. Understanding these adaptive qualities will be of increasing importance in the future as species assemblages and physical controls change with changing climate
Reaching out to the other side: Formal-linguistics-based SLA and Socio-SLA
Generative linguistics has long been concerned with the linguistic competence of the “ideal speaker-listener, in a completely homogeneous speech-community, who knows its language perfectly” (Chomsky 1965: 3). Research in formal-linguistics-based second language acquisition takes as its starting point the second language (L2) speaker's underlying mental representation. Here the factors of interest are influence of the learner's native language and, in generative SLA, the operation of innate linguistic mechanisms (Universal Grammar). Similar to methodology in formal syntax, lxSLA adopts techniques such as grammaticality judgment, comprehension and perception tasks supplementing spontaneously produced oral data. While there may be individual differences in oral production, tasks that tap learners' mental representations reveal commonalities across learners from a given native language background with the same amount/ type of exposure and age of initial L2 exposure. When it comes to phonology, age has long been a central factor with numerous comparative studies showing younger learners far outperforming older learners (see Piske et al. 2001). This paper discusses a case of possible non-acquisition by L2 children who had had considerable exposure to the L2. Children's non-acquisition is only apparent, and this allows us to consider the value of lxSLA methodology on the one hand, and and raises issues about what might be lacking in the current socio-SLA paradigm, on the other. We argue that only when we return to the cooperation that marked its birth in the 1960s will we have a comprehensive picture of SLA
Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles
The thermal behavior of free and alumina-supported iron-carbon nanoparticles
is investigated via molecular dynamics simulations, in which the effect of the
substrate is treated with a simple Morse potential fitted to ab initio data. We
observe that the presence of the substrate raises the melting temperature of
medium and large nanoparticles ( = 0-0.16, = 80-1000, non-
magic numbers) by 40-60 K; it also plays an important role in defining the
ground state of smaller Fe nanoparticles ( = 50-80). The main focus of our
study is the investigation of Fe-C phase diagrams as a function of the
nanoparticle size. We find that as the cluster size decreases in the
1.1-1.6-nm-diameter range the eutectic point shifts significantly not only
toward lower temperatures, as expected from the Gibbs-Thomson law, but also
toward lower concentrations of C. The strong dependence of the maximum C
solubility on the Fe-C cluster size may have important implications for the
catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9
at http://alpha.mems.duke.edu/wahyu
Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting
We present molecular dynamics simulations of the thermodynamic melting
transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We
studied the structural, transport and energetic properties of slabs made of 27
atomic layers with a free surface. We investigated premelting phenomena at the
low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the
temperature increases, the V(111) surface disorders first, then the V(100)
surface, while the V(110) surface remains stable up to the melting temperature.
Also, as the temperature increases, the disorder spreads from the surface layer
into the bulk, establishing a thin quasiliquid film in the surface region. We
conclude that the hierarchy of premelting phenomena is inversely proportional
to the surface atomic density, being most pronounced for the V(111) surface
which has the lowest surface density
Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data
The XENON100 experiment has recently completed a dark matter run with 100.9
live-days of data, taken from January to June 2010. Events in a 48kg fiducial
volume in the energy range between 8.4 and 44.6 keVnr have been analyzed. A
total of three events have been found in the predefined signal region,
compatible with the background prediction of (1.8 \pm 0.6) events. Based on
this analysis we present limits on the WIMP-nucleon cross section for inelastic
dark matter. With the present data we are able to rule out the explanation for
the observed DAMA/LIBRA modulation as being due to inelastic dark matter
scattering off iodine at a 90% confidence level.Comment: 3 pages, 3 figure
Dark Matter Results from 100 Live Days of XENON100 Data
We present results from the direct search for dark matter with the XENON100
detector, installed underground at the Laboratori Nazionali del Gran Sasso of
INFN, Italy. XENON100 is a two-phase time projection chamber with a 62 kg
liquid xenon target. Interaction vertex reconstruction in three dimensions with
millimeter precision allows to select only the innermost 48 kg as ultra-low
background fiducial target. In 100.9 live days of data, acquired between
January and June 2010, no evidence for dark matter is found. Three candidate
events were observed in a pre-defined signal region with an expected background
of 1.8 +/- 0.6 events. This leads to the most stringent limit on dark matter
interactions today, excluding spin-independent elastic WIMP-nucleon scattering
cross-sections above 7.0x10^-45 cm^2 for a WIMP mass of 50 GeV/c^2 at 90%
confidence level.Comment: 5 pages, 5 figures; matches accepted versio
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell
The high pressure and high temperature phase diagram of Ta has been studied
in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements
up to 52 GPa and 3800 K. The melting was observed at nine different pressures,
being the melting temperature in good agreement with previous laser-heated DAC
experiments, but in contradiction with several theoretical calculations and
previous piston-cylinder apparatus experiments. A small slope for the melting
curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible
explanation for this behaviour is given. Finally, a P-V-T equation of states is
obtained, being the temperature dependence of the thermal expansion coefficient
and the bulk modulus estimated.Comment: 31 pages, 8 figures, to appear in J.Phys.:Cond.Matte
- …
