14 research outputs found
The Role of Galectin-1 and Galectin-3 in the Mucosal Immune Response to Citrobacter rodentium Infection
Despite their abundance at gastrointestinal sites, little is known about the role of galectins in gut immune responses. We have therefore investigated the Citrobacter rodentium model of colonic infection and inflammation in Galectin-1 or Galectin-3 null mice. Gal-3 null mice showed a slight delay in colonisation after inoculation with C. rodentium and a slight delay in resolution of infection, associated with delayed T cell, macrophage and dendritic cell infiltration into the gut mucosa. However, Gal-1 null mice also demonstrated reduced T cell and macrophage responses to infection. Despite the reduced T cell and macrophage response in Gal-1 null mice, there was no effect on C. rodentium infection kinetics and pathology. Overall, Gal-1 and Gal-3 play only a minor role in immunity to a gut bacterial pathogen
Vaccination orale contre les infections par les REPEC grâce à une souche bactérienne vivante atténuée double mutante
National audienc
Enteropathogenic E. coli stimulates effector-driven rapid caspase-4 activation in human macrophages
Microbial infections can stimulate the assembly of inflammasomes, which activate caspase-1. The gastrointestinal pathogen enteropathogenic Escherichia coli (EPEC) causes localized actin polymerization in host cells. Actin polymerization requires the binding of the bacterial adhesin intimin to Tir, which is delivered to host cells via a type 3 secretion system (T3SS). We show that EPEC induces T3SS-dependent rapid non-canonical NLRP3 inflammasome activation in human macrophages. Notably, caspase-4 activation by EPEC triggers pyroptosis and cytokine processing through the NLRP3-caspase-1 inflammasome. Mechanistically, caspase-4 activation requires the detection of LPS and EPEC-induced actin polymerization, either via Tir tyrosine phosphorylation and the phosphotyrosine-binding adaptor NCK or Tir and the NCK-mimicking effector TccP. An engineered E. coli K12 could reconstitute Tir-intimin signaling, which is necessary and sufficient for inflammasome activation, ruling out the involvement of other virulence factors. Our studies reveal a crosstalk between caspase-4 and caspase-1 that is cooperatively stimulated by LPS and effector-driven actin polymerization
Inhibition of NF-κB Signaling in Human Dendritic Cells by the Enteropathogenic Escherichia coli
Bacterial toxins and cancer — a case to answer?
Since the discovery that Helicobacter pylori infection leads to gastric cancer, other chronic bacterial infections have been shown to cause cancer. The bacterial and host molecular mechanisms remain unclear. However, many bacteria that cause persistent infections produce toxins that specifically disrupt cellular signalling to perturb the regulation of cell growth or to induce inflammation. Other bacterial toxins directly damage DNA. Such toxins mimic carcinogens and tumour promoters and might represent a paradigm for bacterially induced carcinogenesis
