736 research outputs found

    Electromagnetic Structure of the Trinucleons

    Get PDF
    The electromagnetic form factors of the trinucleons 3H and 3He are calculated with wave functions obtained with the Argonne AV18 two-nucleon and Urbana IX three-nucleon interactions. Full account is taken of the two-body currents required by current conservation with the AV18 interaction as well as those associated with N-Delta transition currents and the currents of Delta resonance components in the wave functions. Explicit three-nucleon current operators associated with the two-pion exchange three-nucleon interaction arising from irreducible S-wave pion-nucleon scattering is constructed and shown to have very little effect on the calculated magnetic form factors. The calculated magnetic form factor of 3H, and charge form factors of both 3H and 3He are in satisfactory agreement with the experimental data. However, the position of the zero in the magnetic form factor of 3He is slightly underpredicted.Comment: 27 pages RevTex file, 19 PostScript figures, submitted to Phys. Rev.

    The α+d 6Li+γ\alpha + d \rightarrow ~ ^6\mathrm{Li} + \gamma astrophysical SS-factor and its implications for Big Bang Nucleosynthesis

    Full text link
    The α+d6Li+γ\alpha+d\rightarrow\, ^6{\rm Li}+\gamma radiative capture is studied in order to predict the 6^6Li primordial abundance. Within a two-body framework, the α\alpha particle and the deuteron are considered the structureless constituents of 6^6Li. Five α+d\alpha+d potentials are used to solve the two-body problem: four of them are taken from the literature, only one having also a tensor component. A fifth model is here constructed in order to reproduce, besides the 6^6Li static properties as binding energy, magnetic dipole and electric quadrupole moments, also the SS-state asymptotic normalization coefficient (ANC). The two-body bound and scattering problem is solved with different techniques, in order to minimize the numerical uncertainty of the present results. The long-wavelength approximation is used, and therefore only the electric dipole and quadrupole operators are retained. The astrophysical SS-factor is found to be significantly sensitive to the ANC, but in all the cases in good agreement with the available experimental data. The theoretical uncertainty has been estimated of the order of few % when the potentials which reproduce the ANC are considered, but increases up to 20\simeq 20 % when all the five potential models are retained. The effect of this SS-factor prediction on the 6^6Li primordial abundance is studied, using the public code PArthENoPE. For the five models considered here we find 6Li/^6{\rm Li}/H=(0.91.8)×1014 = (0.9 - 1.8) \times 10^{-14}, with the baryon density parameter in the 3-σ\sigma range of Planck 2015 analysis, Ωbh2=0.02226±0.00023\Omega_b h^2= 0.02226 \pm 0.00023.Comment: 26 pages, 9 figure

    The parity-violating asymmetry in the 3He(n,p)3H reaction

    Full text link
    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.Comment: 19 pages, 15 tables, revtex

    Benchmark calculation of n-3H and p-3He scattering

    Full text link
    The n-3H and p-3He elastic phase-shifts below the trinucleon disintegration thresholds are calculated by solving the 4-nucleon problem with three different realistic nucleon-nucleon interactions (the I-N3LO model by Entem and Machleidt, the Argonne v18 potential model, and a low-k model derived from the CD-Bonn potential). Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been used and their respective results are compared. For both n-3H and p-3He we observe a rather good agreement between the three different theoretical methods. We also compare the theoretical predictions with the available experimental data, confirming the large underprediction of the p-3He analyzing power.Comment: 18 pages, 9 figure

    Polarization observables in p-d scattering below 30 MeV

    Full text link
    Differential and total breakup cross sections as well as vector and tensor analyzing powers for p-d scattering are studied for energies above the deuteron breakup threshold up to E(lab)=28 MeV. The p-d scattering wave function is expanded in terms of the correlated hyperspherical harmonic basis and the elastic S-matrix is obtained using the Kohn variational principle in its complex form. The effects of the Coulomb interaction, which are expected to be important in this energy range, have been rigorously taken into account. The Argonne AV18 interaction and the Urbana URIX three-nucleon potential have been used to perform a comparison to the available experimental data.Comment: 31 pages, 8 figure

    Freight distribution performance indicators for service quality planning in large transportation networks

    Get PDF
    This paper studies the use of performance indicators in routing problems to estimate how transportation cost is affected by the quality of service offered. The quality of service is assumed to be directly dependent on the size of the time windows. Smaller time windows mean better service. Three performance indicators are introduced. These indicators are calculated directly from the data without the need of a solution method. The introduced indicators are based mainly on a "request compatibility", which describes whether two visits can be scheduled consecutively in a route. Other two indicators are introduced, which get their values from a greedy constructive heuristic. After introducing the indicators, the correlation between indicators and transportation cost is examined. It is concluded that the indicators give a good first estimation on the transportation cost incurred when providing a certain quality of service. These indicators can be calculated easily in one of the first planning steps without the need of a sophisticated solution tool. The contribution of the paper is the introduction of a simple set of performance indicators that can be used to estimate the transportation cost of a routing problem with time window

    Photo- and Electro-Disintegration of 3He at Threshold and pd Radiative Capture

    Get PDF
    The present work reports results for: pd radiative capture observables measured at center-of-mass (c.m.) energies in the range 0--100 keV and at 2 MeV by the TUNL and Wisconsin groups, respectively; contributions to the Gerasimov-Drell-Hearn (GDH) integral in 3He from the two- up to the three-body breakup thresholds, compared to experimental determinations by the TUNL group in this threshold region; longitudinal, transverse, and interference response functions measured in inclusive polarized electron scattering off polarized 3He at excitation energies below the threshold for breakup into ppn, compared to unpolarized longitudinal and transverse data from the Saskatoon group. The calculations are based on a realistic Hamiltonian with two- and three-nucleon interactions and a realistic current operator, including one- and two-body components. The theoretical predictions obtained by including only one-body currents are in violent disagreement with data. These differences between theory and experiment are, to a large extent, removed when two-body currents are taken into account, although some rather large discrepancies remain in the c.m. energy range 0--100 keV, particularly for the pd differential cross section and tensor analyzing power at small angles, and contributions to the GDH integral. A rather detailed analysis indicates that these discrepancies have, in large part, a common origin, and can be traced back to an excess strength obtained in the theoretical calculation of the E1 reduced matrix element associated with the pd channel having L,S,J=1,1/2,3/2. It is suggested that this lack of E1 strength observed experimentally might have implications for the nuclear interaction at very low energies. Finally, the validity of the long-wavelength approximation for electric dipole transitions is discussed.Comment: 47 pages RevTex file, 10 PostScript figures, submitted to Phys. Rev.

    JLab Measurement of the 4^4He Charge Form Factor at Large Momentum Transfers

    Get PDF
    The charge form factor of ^4He has been extracted in the range 29 fm2^{-2} Q277\le Q^2 \le 77 fm2^{-2} from elastic electron scattering, detecting 4^4He nuclei and electrons in coincidence with the High Resolution Spectrometers of the Hall A Facility of Jefferson Lab. The results are in qualitative agreement with realistic meson-nucleon theoretical calculations. The data have uncovered a second diffraction minimum, which was predicted in the Q2Q^2 range of this experiment, and rule out conclusively long-standing predictions of dimensional scaling of high-energy amplitudes using quark counting.Comment: 4 pages, 2 figure

    Sustainability analysis of the CITYLAB solutions

    Get PDF
    The objective of the CITYLAB project is to develop knowledge and solutions that result in roll-out, upscaling and further uptake of cost effective strategies, measures and tools for emission free city logistics. CITYLAB includes a set of Living Laboratories where promising logistic concepts are implemented related to emissions free city logistics. The objective of this report is to assess the impact that would occur when the CITYLAB implementations would be scaled up. The main challenge that has to be overcome is the difference in type, availability and detail of data from different CITYLAB implementations. This assessment of the impacts of upscaling is done by integrating all stakeholders’ opinions in the evaluation process and taking into account the costs and benefits for society as well as the financial viability for industry partners
    corecore