93 research outputs found
Evaluation of carcass performance of Matebele goats managed extensively based on the eruption of permanent incisors teeth
Matebele goats were slaughtered at different state of permanent incisors eruption 1st pair (I1 )(237records), 2nd pair (I2 )(312 records), 3rd pair (I3 )(237records), 4th pair (I4)(232 ), Broken Mouth (BM)(214) and Smooth Mouth (SM)(218) over a period of 15 years (1989- 2004) and analysed for carcass performance. Performance parameters and weight of organs as a percentage of empty body weight (EBW) containing the effects of number of permanent incisors at I1, I2, I3, I4,, BM and SM were analysed using the General Linear Models. Live weight averaged 21.57 kg ± 0.02, 27.01± 0.02 kg, 28.40± 0.02 kg, 28.88± 0.02 kg, 36.92± 0.02 kg and 37.33± 0.02 kg for goats slaughtered at I1, I2, I3, I4,,, BM and SM, respectively. There was a significant (p<0.01) difference in slaughter weight at different periods of permanent incisors teeth eruptions. The goats slaughtered at I1 and I2 had significantly heavier hot carcass mass,cold carcass mass and rib barrel than those slaughtered I3, I4,, BM and SM. The goats slaughtered at I3 had the highest dressing percentage and goats slaughtered at BM had the lowest dressing percentage (DP). For external noncarcass components, the proportion of the head did not change but it was the feet proportion that increased markedly from I1 to I3 which coincided with the decrease in pelt. The proportion of hind barrel, head and kidney fat seemed to be constant. There was a significant (p< 0.01) difference between mesenteric fat amongst teeth groups, which increased with increasing number of permanent incisors eruption representing age increase. The lower proportion of noncarcass components in I3 may have contributed to a higher DP
Prevalence and tick loads in Nguni cattle reared in different environmental conditions across four provinces of South Africa
BACKGROUND AND AIM: In tropical and subtropical countries, ixodid ticks are among livestock’s most economically important ectoparasites. Although Nguni cattle from South Africa have adapted to harsh environments, it is unknown whether they will be resistant to ticks, and the diseases carried by ticks under various climatic conditions. Therefore, this study aimed to compare tick load and estimate the prevalence of different tick species among Nguni cattle under different environmental conditions. MATERIALS AND METHODS: Tick counts were conducted monthly under natural challenges over 2 years on 586 Nguni cattle located at ARC-Roodeplaat and Loskop farms (warmer climate), Mukhuthali Nguni Community and the University of Fort Hare farms (cooler climate). The generalized linear model procedure of the Statistical Analysis System was used to analyze the data. It fitted the location (farm), sex, year, month or season, and animal age as covariates. RESULTS: The tick species (relative prevalence) observed were as follows: Amblyomma hebraeum (42%), Rhipicephalus evertsi (22%), Rhipicephalus (Boophilus) spp. (16%), Rhipicephalus appendiculatus (11%), Hyalomma marginatum (5%), and Rhipicephalus simus (4%). Tick infestation was significantly affected by location, season, year, month of the tick counting and age of the animal. Loskop farm had the highest tick count (m = 30.69) and showed the largest variation in tick count. Compared to the other seasons, higher tick counts were seen during the hot-dry (September–November) and hot-wet (December–February) seasons. A. hebraeum was the dominant tick species across all four farms, followed by R. evertsi. The perianal region (under the tail head), the perineum and the belly body locations were the most preferred tick attachment sites. CONCLUSION: These results provide useful information for developing appropriate control strategies for ticks and tick-borne diseases in these provinces of South Africa. Further work must investigate the feasibility of genetic improvement for tick resistance
A putative recessive gene responsible for a leg defect syndrome in a genetic sire line nucleaus population of pigs
Identification of SNP Markers for Resistance to Salmonella and IBDV in Indigenous Ethiopian Chickens
Genomic regions underlying susceptibility to bovine tuberculosis in Holstein-Friesian cattle
Background The significant social and economic loss as a result of bovine tuberculosis (bTB) presents a continuous challenge to cattle industries in the UK and worldwide. However, host genetic variation in cattle susceptibility to bTB provides an opportunity to select for resistant animals and further understand the genetic mechanisms underlying disease dynamics. Methods The present study identified genomic regions associated with susceptibility to bTB using genome-wide association (GWA), regional heritability mapping (RHM) and chromosome association approaches. Phenotypes comprised de-regressed estimated breeding values of 804 Holstein-Friesian sires and pertained to three bTB indicator traits: i) positive reactors to the skin test with positive post-mortem examination results (phenotype 1); ii) positive reactors to the skin test regardless of post-mortem examination results (phenotype 2) and iii) as in (ii) plus non-reactors and inconclusive reactors to the skin tests with positive post-mortem examination results (phenotype 3). Genotypes based on the 50 K SNP DNA array were available and a total of 34,874 SNPs remained per animal after quality control. Results The estimated polygenic heritability for susceptibility to bTB was 0.26, 0.37 and 0.34 for phenotypes 1, 2 and 3, respectively. GWA analysis identified a putative SNP on Bos taurus autosomes (BTA) 2 associated with phenotype 1, and another on BTA 23 associated with phenotype 2. Genomic regions encompassing these SNPs were found to harbour potentially relevant annotated genes. RHM confirmed the effect of these genomic regions and identified new regions on BTA 18 for phenotype 1 and BTA 3 for phenotypes 2 and 3. Heritabilities of the genomic regions ranged between 0.05 and 0.08 across the three phenotypes. Chromosome association analysis indicated a major role of BTA 23 on susceptibility to bTB. Conclusion Genomic regions and candidate genes identified in the present study provide an opportunity to further understand pathways critical to cattle susceptibility to bTB and enhance genetic improvement programmes aiming at controlling and eradicating the disease
Confirmation of two quantitative trait loci regions for nematode resistance in commercial British terminal sire breeds
Integrating genetic and genomic analyses of combined health data across ecotypes to improve disease resistance in indigenous African chickens
Poultry play an important role in the agriculture of many African countries. The majority of chickens in sub-Saharan Africa are indigenous, raised in villages under semi-scavenging conditions. Vaccinations and biosecurity measures rarely apply, and infectious diseases remain a major cause of mortality and reduced productivity. Genomic selection for disease resistance offers a potentially sustainable solution but this requires sufficient numbers of individual birds with genomic and phenotypic data, which is often a challenge to collect in the small populations of indigenous chicken ecotypes. The use of information across-ecotypes presents an attractive possibility to increase the relevant numbers and the accuracy of genomic selection. In this study, we performed a joint analysis of two distinct Ethiopian indigenous chicken ecotypes to investigate the genomic architecture of important health and productivity traits and explore the feasibility of conducting genomic selection across-ecotype. Phenotypic traits considered were antibody response to Infectious Bursal Disease (IBDV), Marek’s Disease (MDV), Fowl Cholera (PM) and Fowl Typhoid (SG), resistance to Eimeria and cestode parasitism, and productivity [body weight and body condition score (BCS)]. Combined data from the two chicken ecotypes, Horro (n = 384) and Jarso (n = 376), were jointly analyzed for genetic parameter estimation, genome-wide association studies (GWAS), genomic breeding value (GEBVs) calculation, genomic predictions, whole-genome sequencing (WGS), and pathways analyses. Estimates of across-ecotype heritability were significant and moderate in magnitude (0.22–0.47) for all traits except for SG and BCS. GWAS identified several significant genomic associations with health and productivity traits. The WGS analysis revealed putative candidate genes and mutations for IBDV (TOLLIP, ANGPTL5, BCL9, THEMIS2), MDV (GRM7), SG (MAP3K21), Eimeria (TOM1L1) and cestodes (TNFAIP1, ATG9A, NOS2) parasitism, which warrant further investigation. Reliability of GEBVs increased compared to within-ecotype calculations but accuracy of genomic prediction did not, probably because the genetic distance between the two ecotypes offset the benefit from increased sample size. However, for some traits genomic prediction was only feasible in across-ecotype analysis. Our results generally underpin the potential of genomic selection to enhance health and productivity across-ecotypes. Future studies should establish the required minimum sample size and genetic similarity between ecotypes to ensure accurate joint genomic selection
The Genomic Architecture of Fowl Typhoid Resistance in Commercial Layers
Salmonella enterica serovar Gallinarum causes devastating outbreaks of fowl typhoid across the globe, especially in developing countries. With the use of antimicrobial agents being reduced due to legislation and the absence of licensed vaccines in some parts of the world, an attractive complementary control strategy is to breed chickens for increased resistance to Salmonella. The potential for genetic control of salmonellosis has been demonstrated by experimental challenge of inbred populations. Quantitative trait loci (QTL) associated with resistance have been identified in many genomic regions. A major QTL associated with systemic salmonellosis has been identified in a region termed SAL1. In the present study, two outbreaks of fowl typhoid in 2007 and 2012 in the United Kingdom were used to investigate the genetic architecture of Salmonella resistance in commercial laying hens. In the first outbreak 100 resistant and 150 susceptible layers were genotyped using 11 single nucleotide polymorphism (SNP) and 3 microsatellite markers located in the previously identified SAL1 region on chromosome 5. From the second outbreak 100 resistant and 200 susceptible layers, belonging to a different line, were genotyped with a high-density (600 K) genome-wide SNP array. Substantial heritability estimates were obtained in both populations (h2 = 0.22 and 0.26, for the layers in the first and second outbreak, respectively). Significant associations with three markers on chromosome 5 located close to AKT1 and SIVA1 genes, coding for RAC-alpha serine/threonine protein kinase, and the CD27-binding protein SIVA1, respectively, were identified in the first outbreak. From analysis of the second outbreak, eight genome-wide significant associations with Salmonella resistance were identified on chromosomes 1, 6, 7, 11, 23, 24, 26, 28 and several others with suggestive genome-wide significance were found. Pathway and network analysis revealed the presence of many innate immune pathways related to Salmonella resistance. Although, significant associations with SNPs located in the SAL1 locus were not identified by the genome-wide scan for layers from the second outbreak, pathway analysis revealed P13K/AKT signaling as the most significant pathway. In summary, resistance to fowl typhoid is a heritable polygenic trait that could possibly be enhanced through selective breeding
- …
