548 research outputs found
Trust in the US-EU fruit and vegetable chain: Do US exporters understand EU importers?
Research on organizational and inter organizational trust has become an important field in management and marketing literature, as it is perceived as a pivotal aspect of business transactions. However, clarifications are still needed on the issue of whom we trust; is the person whom we are trading with trusted, or the organization, or just the product‐quality? Not only has this question not been answered within this field of research, neither have cultural differences have been described to any great extent. Additionally, if the perceived factors important to establish trusting relationships may or may not be the same on the buyers and the sellers side in international business transaction in food chains. The primary objective of this research study therefore is to identify how well US exporters understand the elements of trust that establish strong relationships with EU importers. The Analytical Hierarchy Process was used to evaluate the importance of different trust elements in interviews conducted with US exporters and EU importers of fruits and vegetables. Results are compared, providing both a picture of the important facets of trust, as well as whether the partners understand the perspectives of the other partner
Detection of a Far-Infrared Bow-Shock Nebula Around R Hya: the First MIRIAD Results
We present the first results of the MIRIAD (MIPS [Multiband Imaging
Photometer for Spitzer] Infra-Red Imaging of AGB [asymptotic giant branch]
Dustshells) project using the Spitzer Space Telescope. The primary aim of the
project is to probe the material distribution in the extended circumstellar
envelopes (CSE) of evolved stars and recover the fossil record of their mass
loss history. Hence, we must map the whole of the CSEs plus the surrounding sky
for background subtraction, while avoiding the central star that is brighter
than the detector saturation limit. With our unique mapping strategy, we have
achieved better than one MJy/sr sensitivity in three hours of integration and
successfully detected a faint (< 5 MJy/sr), extended (~400 arcsec) far-infrared
nebula around the AGB star R Hya. Based on the parabolic structure of the
nebula, the direction of the space motion of the star with respect to the
nebula shape, and the presence of extended H alpha emission co-spatial to the
nebula, we suggest that the detected far-IR nebula is due to a bow shock at the
interface of the interstellar medium and the AGB wind of this moving star. This
is the first detection of the stellar-wind bow-shock interaction for an AGB
star and exemplifies the potential of Spitzer as a tool to examine the detailed
structure of extended far-IR nebulae around bright central sources. \Comment: 10 pages, 2 figures, accepted for publication in ApJ
Finite nuclear size and Lamb shift of p-wave atomic states
We consider corrections to the Lamb shift of p-wave atomic states due to the
finite nuclear size (FNS). In other words, these are radiative corrections to
the atomic isotop shift related to FNS. It is shown that the structure of the
corrections is qualitatively different from that for s-wave states. The
perturbation theory expansion for the relative correction for a -state
starts from -term, while for -states it starts
from term. Here is the fine structure constant and is
the nuclear charge. In the present work we calculate the -terms for
-states, the result for -state reads
. Even more interesting are
-states. In this case the ``correction'' is by several orders of
magnitude larger than the ``leading'' FNS shift.Comment: 4 pages, 2 figure
The ionized and hot gas in M17 SW: SOFIA/GREAT THz observations of [C II] and 12CO J=13-12
With new THz maps that cover an area of ~3.3x2.1 pc^2 we probe the spatial
distribution and association of the ionized, neutral and molecular gas
components in the M17 SW nebula. We used the dual band receiver GREAT on board
the SOFIA airborne telescope to obtain a 5'.7x3'.7 map of the 12CO J=13-12
transition and the [C II] 158 um fine-structure line in M17 SW and compare the
spectroscopically resolved maps with corresponding ground-based data for low-
and mid-J CO and [C I] emission. For the first time SOFIA/GREAT allow us to
compare velocity-resolved [C II] emission maps with molecular tracers. We see a
large part of the [C II] emission, both spatially and in velocity, that is
completely non-associated with the other tracers of photon-dominated regions
(PDR). Only particular narrow channel maps of the velocity-resolved [C II]
spectra show a correlation between the different gas components, which is not
seen at all in the integrated intensity maps. These show different morphology
in all lines but give hardly any information on the origin of the emission. The
[C II] 158 um emission extends for more than 2 pc into the M17 SW molecular
cloud and its line profile covers a broader velocity range than the 12CO
J=13-12 and [C I] emissions, which we interpret as several clumps and layers of
ionized carbon gas within the telescope beam. The high-J CO emission emerges
from a dense region between the ionized and neutral carbon emissions,
indicating the presence of high-density clumps that allow the fast formation of
hot CO in the irradiated complex structure of M17 SW. The [C II] observations
in the southern PDR cannot be explained with stratified nor clumpy PDR models.Comment: 4 pages, 4 figures, letter accepted for the SOFIA/GREAT A&A 2012
special issu
Greybody Factors for Brane Scalar Fields in a Rotating Black-Hole Background
We study the evaporation of (4+n)-dimensional rotating black holes into
scalar degrees of freedom on the brane. We calculate the corresponding
absorption probabilities and cross-sections obtaining analytic solutions in the
low-energy regime, and compare the derived analytic expressions to numerical
results, with very good agreement. We then consider the high-energy regime,
construct an analytic high-energy solution to the scalar-field equation by
employing a new method, and calculate the absorption probability and
cross-section for this energy regime, finding again a very good agreement with
the exact numerical results. We also determine the high-energy asymptotic value
of the total cross-section, and compare it to the analytic results derived from
the application of the geometrical optics limit.Comment: Latex file, 30 pages, 5 figures, typos corrected, version published
in Phys. Rev.
A study of the s-process in the carbon-rich post-AGB stars IRAS06530-0213 and IRAS08143-4406 on the basis of VLT-UVES spectra
In an effort to extend the still limited sample of s-process enriched
post-AGB stars, high-resolution, high signal-to-noise VLT+UVES spectra of the
optical counterparts of the infrared sources IRAS06530-0213 and IRAS08143-4406
were analysed. The objects are moderately metal deficient by [Fe/H]=-0.5 and
-0.4 respectively, carbon-rich and, above all, heavily s-process enhanced with
a [ls/Fe] of 1.8 and 1.5 respectively. Especially the spectrum of
IRAS06530-0213 is dominated by transitions of s-process species, and therefore
resembling the spectrum of IRAS05341+0852, the most s-process enriched object
known so far. The two objects are chemically very similar to the 21micron
objects discussed in Van Winckel & Reyniers (2000). A homogeneous comparison
with the results of these objects reveals that the relation between the third
dredge-up efficiency and the neutron nucleosynthesis efficiency found for the
21micron objects, is further strengthened. On the other hand, a detailed
comparison with the predictions of the latest AGB models indicates that the
observed spread in nucleosynthesis efficiency is certainly intrinsic, and
proves that different C-13 pockets are needed for stars with comparable mass
and metallicity to explain their abundances.Comment: 14 pages, 10 figures, accepted for publication in A&A; Table 4 is
available at ftp://ftp.ster.kuleuven.ac.be/dist/maarten/filescds/ pending
upload to CD
Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia
International audienceWithin the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday) maximum deposition velocity of 2.3 cm s?1, and a corresponding O3 flux of ?11 nmol m?2 s?1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb) than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s?1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO) was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified. Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3 dry deposition values from this site with typical vegetation cover of deforested land in southwest Amazonia to the results from the primary rain forest. The mean ozone deposition to the pasture was found to be systematically lower than that to the forest by 30% in the wet and 18% in the dry season
Time--delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes
The double barrier resonant tunneling diode exhibits complex spatio-temporal
patterns including low-dimensional chaos when operated in an active external
circuit. We demonstrate how autosynchronization by time--delayed feedback
control can be used to select and stabilize specific current density patterns
in a noninvasive way. We compare the efficiency of different control schemes
involving feedback in either local spatial or global degrees of freedom. The
numerically obtained Floquet exponents are explained by analytical results from
linear stability analysis.Comment: 10 pages, 16 figure
SPITZER SAGE Observations of Large Magellanic Cloud Planetary Nebulae
We present IRAC and MIPS images and photometry of a sample of previously
known planetary nebulae (PNe) from the SAGE survey of the Large Magellanic
Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in
the survey field, 185 objects were detected in at least two of the IRAC bands,
and 161 detected in the MIPS 24 micron images. Color-color and color-magnitude
diagrams are presented using several combinations of IRAC, MIPS, and 2MASS
magnitudes. The location of an individual PN in the color-color diagrams is
seen to depend on the relative contributions of the spectral components which
include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared
forbidden line emission from the ionized gas, warm dust continuum, and emission
directly from the central star. The sample of LMC PNe is compared to a number
of Galactic PNe and found to not significantly differ in their position in
color-color space. We also explore the potential value of IR PNe luminosity
functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form
as the well-established [O III] LFs although there are several PNe with
observed IR magnitudes brighter than the cut-offs in these LFs.Comment: 18 pages, 10 figures, 3 tables, to be published in the Astronomical
Journal. Additional online data available at
http://www.cfa.harvard.edu/irac/publications
Thermodynamic efficiency of information and heat flow
A basic task of information processing is information transfer (flow). Here
we study a pair of Brownian particles each coupled to a thermal bath at
temperature and , respectively. The information flow in such a
system is defined via the time-shifted mutual information. The information flow
nullifies at equilibrium, and its efficiency is defined as the ratio of flow
over the total entropy production in the system. For a stationary state the
information flows from higher to lower temperatures, and its the efficiency is
bound from above by . This upper bound is
imposed by the second law and it quantifies the thermodynamic cost for
information flow in the present class of systems. It can be reached in the
adiabatic situation, where the particles have widely different characteristic
times. The efficiency of heat flow|defined as the heat flow over the total
amount of dissipated heat|is limited from above by the same factor. There is a
complementarity between heat- and information-flow: the setup which is most
efficient for the former is the least efficient for the latter and {\it vice
versa}. The above bound for the efficiency can be [transiently] overcome in
certain non-stationary situations, but the efficiency is still limited from
above. We study yet another measure of information-processing [transfer
entropy] proposed in literature. Though this measure does not require any
thermodynamic cost, the information flow and transfer entropy are shown to be
intimately related for stationary states.Comment: 19 pages, 1 figur
- …
