1,199 research outputs found
Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures.
The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed
Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene.
Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all javax.xml.bind.JAXBElement@dc06fb4 clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor javax.xml.bind.JAXBElement@374d721c gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu javax.xml.bind.JAXBElement@4655f570 , Phe javax.xml.bind.JAXBElement@112b804a , Phe javax.xml.bind.JAXBElement@1f18e014 , and His javax.xml.bind.JAXBElement@4319ac79 ) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous javax.xml.bind.JAXBElement@2a0e3f1f gene of a terbinafine-sensitive javax.xml.bind.JAXBElement@67eac3c4 (formerly javax.xml.bind.JAXBElement@3f2a876d ) strain. All of the generated javax.xml.bind.JAXBElement@315e9e95 transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in javax.xml.bind.JAXBElement@6af3a966 transformants expressing mutant forms of javax.xml.bind.JAXBElement@5bb6b31f SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains
Near surface nutrient and phytoplankton distribution in the Drake Passage during early December
Nutrient concentrations and phytoplankton species composition in near surface samples were studied along a S-N gradient in the Drake Passage, in early December 1984. Nitrate concentrations were much lower than usually previously reported from circum-Antarctic waters. Comparison of dissolved nutrient concentrations with growth requirements of Antarctic plankton algae suggests potential limitation of at least some species by nitrate or silicate. The taxonomic composition of the phytoplankton in our samples seemed to be partially controlled by competition for limiting nutrients
Spectroscopy, Interactions and Level Splittings in Au Nanoparticles
We have measured the electronic energy spectra of nm-scale Au particles using
a new tunneling spectroscopy configuration. The particle diameters ranged from
5nm to 9nm, and at low energies the spectrum is discrete, as expected by the
electron-in-a-box model. The density of tunneling resonances increases rapidly
with energy, and at higher energies the resonances overlap forming broad
resonances. Near the Thouless energy, the broad resonances merge into a
continuum. The tunneling resonances display Zeeman splitting in a magnetic
field. Surprisingly, the g-factors (~0.3) of energy levels in Au nano-particles
are much smaller than the g-factor (2.1) in bulk gold
A lattice in more than two Kac--Moody groups is arithmetic
Let be an irreducible lattice in a product of n infinite irreducible
complete Kac-Moody groups of simply laced type over finite fields. We show that
if n is at least 3, then each Kac-Moody groups is in fact a simple algebraic
group over a local field and is an arithmetic lattice. This relies on
the following alternative which is satisfied by any irreducible lattice
provided n is at least 2: either is an S-arithmetic (hence linear)
group, or it is not residually finite. In that case, it is even virtually
simple when the ground field is large enough.
More general CAT(0) groups are also considered throughout.Comment: Subsection 2.B was modified and an example was added ther
Heavy electrons and the symplectic symmetry of spin
The recent discovery of two heavy fermion materials PuCoGa_{5} and
NpPd_{5}Al_{2} which transform directly from Curie paramagnets into
superconductors, reveals a new class of superconductor where local moments
quench directly into a superconducting condensate. A powerful tool in the
description of heavy fermion metals is the large N expansion, which expands the
physics in powers of 1/N about a solvable limit where particles carry a large
number (N) of spin components. As it stands, this method is unable to jointly
describe the spin quenching and superconductivity which develop in PuCoGa_{5}
and NpPd_{5}Al_{2}. Here, we solve this problem with a new class of large N
expansion that employs the symplectic symmetry of spin to protect the odd
time-reversal parity of spin and sustain Cooper pairs as well-defined singlets.
With this method we show that when a lattice of magnetic ions exchange spin
with their metallic environment in two distinct symmetry channels, they are
able to simultaneously satisfy both channels by forming a condensate of
composite pairs between between local moments and electrons. In the tetragonal
crystalline environment relevant to PuCoGa_{5} and NpPd_{5}Al_{2} the lattice
structure selects a natural pair of spin exchange channels, giving rise to the
prediction of a unique anisotropic paired state with g-wave symmetry. This
pairing mechanism predicts a large upturn in the NMR relaxation rate above
T_{c}, a strong enhancement of Andreev reflection in tunneling measurements and
an enhanced superconducting transition temperature T_{c} in Pu doped
Np_{1-x}Pu_{x}Pd_{5}Al_{2}.Comment: This is a substantially revised version of the original paper,
focussing on the high temperature heavy electron superconductors PuCoGa_5 and
NpPd_5Al_2. A substantially revised supplementary online material to this
paper can be found in arXiv 0710.1128v
Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes
We describe two dimensional models with a metallic Fermi surface which
display quantum phase transitions controlled by strongly interacting critical
field theories below their upper critical dimension. The primary examples
involve transitions with a topological order parameter associated with
dislocations in collinear spin density wave ("stripe") correlations: the
gapping of the order parameter fluctuations leads to a fractionalization of
spin and charge collective modes, and this transition has been proposed as a
candidate for the cuprates near optimal doping. The coupling between the order
parameter and long-wavelength volume and shape deformations of the Fermi
surface is analyzed by the renormalization group, and a runaway flow to a
non-perturbative regime is found in most cases. A phenomenological scaling
analysis of simple observable properties of possible second order quantum
critical points is presented, with results quite similar to those near quantum
spin glass transitions and to phenomenological forms proposed by Schroeder et
al. (cond-mat/0011002).Comment: 16 pages, 4 figures; (v2) additional clarifying remark
Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors
The singlet s-, d- and triplet p-wave pairing symmetries in
quasi-one-dimensional organic superconductors can be experimentally
discriminated by probing the Andreev bound states at the sample edges. These
states have the energy in the middle of the superconducting gap and manifest
themselves as a zero-bias peak in tunneling conductance into the corresponding
edge. Their existence is related to the sign change of the pairing potential
around the Fermi surface. We present an exact self-consistent solution of the
edge problem showing the presence of the midgap states for p_x-wave
superconductivity. The spins of the edge state respond paramagnetically to a
magnetic field parallel to the vector d that characterizes triplet pairing.Comment: 6 pages, 4 figures. V.2: New section on spin response is added and
references are updated. V.3: Final version accepted to PRB. Typos are
corrected and important note is added in proof
Superconducting gap node spectroscopy using nonlinear electrodynamics
We present a method to determine the nodal structure of the energy gap of
unconventional superconductors such as high materials. We show how
nonlinear electrodynamics phenomena in the Meissner regime, arising from the
presence of lines on the Fermi surface where the superconducting energy gap is
very small or zero, can be used to perform ``node spectroscopy'', that is, as a
sensitive bulk probe to locate the angular position of those lines. In
calculating the nonlinear supercurrent response, we include the effects of
orthorhombic distortion and plane anisotropy. Analytic results presented
demonstrate a systematic way to experimentally distinguish order parameters of
different symmetries, including cases with mixed symmetry (for example,
and ). We consider, as suggested by various experiments, order parameters
with predominantly -wave character, and describe how to determine the
possible presence of other symmetries. The nonlinear magnetic moment displays a
distinct behavior if nodes in the gap are absent but regions with small,
finite, values of the energy gap exist.Comment: 18 pages, Revtex, 9 postscript figures. Submitted to Phys. Rev
Odd Frequency Pairing in the Kondo Lattice
We discuss the possibility that heavy fermion superconductors involve
odd-frequency pairing of the kind first considered by Berezinskii. Using a toy
model for odd frequency triplet pairing in the Kondo lattice we are able to
examine key properties of this new type of paired state. To make progress
treating the strong constraint in the Kondo lattice model we use the
technical trick of a Majorana representation of the local moments, which
permits variational treatments of the model without a Gutzwiller approximation.
The simplest mean field theory involves the development of bound states between
the local moments and conduction electrons, characterized by a spinor order
parameter. We show that this state is a stable realization of odd frequency
triplet superconductivity with surfaces of gapless excitations whose spin and
charge coherence factors vanish linearly in the quasiparticle energy. A
NMR relaxation rate coexists with a linear specific heat. We discuss possible
extensions of our toy model to describe heavy fermion superconductivity.Comment: 67 page
- …
