7,297 research outputs found

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let

    Incipient failure in sandpile models

    Full text link
    Elastoplastic and constitutive equation theories are two approaches based on very different assumptions for creating a continuum theory for the stress distributions in a static sandpile. Both models produce the same surprising prediction that in a two dimensional granular pile constructed at its angle of repose, the outside wedge will be on the verge of failure. We show how these predictions can be tested experimentally.Comment: 5 pages, 1 figur

    Phase cascade bridge rectifier array in a 2-D lattice

    Full text link
    We report on a novel rectification phenomenon in a 2-D lattice network consisting of N×N sites with diode and AC source elements with controllable phases. A phase cascade configuration is described in which the current ripple in a load resistor goes to zero in the large N limit, enhancing the rectification efficiency without requiring any external capacitor or inductor based filters. The integrated modular configuration is qualitatively different from conventional rectenna arrays in which the source, rectifier and filter systems are physically disjoint. Exact analytical results derived using idealized diodes are compared to a realistic simulation of commercially available diodes. Our results on nonlinear networks of source-rectifier arrays are potentially of interest to a fast evolving field of distributed power networks

    Analytic Model for Advection-Dominated Accretion Flows in a Global Magnetic Field

    Get PDF
    A model for advection-dominated accretion flows (ADAFs) in a global magnetic field is proposed. In contrast to the well known ADAF models in which the viscosity of a fluid determines both angular momentum transfer and energy dissipation in the flow, the magnetic field and the electric resistivity, respectively, control them in this model. A manageable set of analytic solutions for the flow and the magnetic field is obtained to vertically non-integrated basic equations. This set describes mathematically a fully advective accretion flow and, in physically plausible situations for most AGNs, it is also confirmed that the radiation cooling estimated on this solution is really negligible compared with the internal energy of the flow.Comment: 27pages, 1 figure, to appear in ApJ vol 529, Feb.1, 200

    Quantum black holes from null expansion operators

    Full text link
    Using a recently developed quantization of spherically symmetric gravity coupled to a scalar field, we give a construction of null expansion operators that allow a definition of general, fully dynamical quantum black holes. These operators capture the intuitive idea that classical black holes are defined by the presence of trapped surfaces, that is surfaces from which light cannot escape outward. They thus provide a mechanism for classifying quantum states of the system into those that describe quantum black holes and those that do not. We find that quantum horizons fluctuate, confirming long-held heuristic expectations. We also give explicit examples of quantum black hole states. The work sets a framework for addressing the puzzles of black hole physics in a fully quantized dynamical setting.Comment: 5 pages, version to appear in CQ

    PS1-10jh Continues to Follow the Fallback Accretion Rate of a Tidally Disrupted Star

    Full text link
    We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with HST/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a t5/3t^{-5/3} power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ~ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer H\delta absorption in the host galaxy strong enough to be indicative of a rare, post-starburst "E+A" galaxy as reported by Arcavi et al. (2014). The light curve of PS1-10jh over a baseline of 3.5 yr is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He II \lambda 4686/H\alpha > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically-thick, extended reprocessing envelope.Comment: Accepted for publication in ApJ Letter

    Modelling the black hole silhouette in Sgr A* with ion tori

    Full text link
    We calculate the "observed at infinity" image and spectrum of the accretion structure in Sgr A*, by modelling it as an optically thin, constant angular momentum ion torus in hydrodynamic equilibrium. The physics we consider includes a two-temperature plasma, a toroidal magnetic field, as well as radiative cooling by bremsstrahlung, synchrotron and inverse Compton processes. Our relativistic model has the virtue of being fully analytic and very simple, depending only on eight tunable parameters: the black hole spin and the inclination of the spin axis to our line of sight, the torus angular momentum, the polytropic index, the magnetic to total pressure ratio, the central values of density and electron temperature and the ratio of electron to ion temperatures. The observed image and spectrum are calculated numerically using the ray-tracing code GYOTO. Our results demonstrate that the ion torus model is able to account for the main features of the accretion structure surrounding Sgr A*.Comment: 11 pages, 10 figures, submitted to A &

    Collective Particle Flow through Random Media

    Full text link
    A simple model for the nonlinear collective transport of interacting particles in a random medium with strong disorder is introduced and analyzed. A finite threshold for the driving force divides the behavior into two regimes characterized by the presence or absence of a steady-state particle current. Below this threshold, transient motion is found in response to an increase in the force, while above threshold the flow approaches a steady state with motion only on a network of channels which is sparse near threshold. Some of the critical behavior near threshold is analyzed via mean field theory, and analytic results on the statistics of the moving phase are derived. Many of the results should apply, at least qualitatively, to the motion of magnetic bubble arrays and to the driven motion of vortices in thin film superconductors when the randomness is strong enough to destroy the tendencies to lattice order even on short length scales. Various history dependent phenomena are also discussed.Comment: 63 preprint pages plus 6 figures. Submitted to Phys Rev
    corecore