7,297 research outputs found
Self similar Barkhausen noise in magnetic domain wall motion
A model for domain wall motion in ferromagnets is analyzed. Long-range
magnetic dipolar interactions are shown to give rise to self-similar dynamics
when the external magnetic field is increased adiabatically. The power spectrum
of the resultant Barkhausen noise is of the form , where
can be estimated from the critical exponents for interface
depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
Incipient failure in sandpile models
Elastoplastic and constitutive equation theories are two approaches based on
very different assumptions for creating a continuum theory for the stress
distributions in a static sandpile. Both models produce the same surprising
prediction that in a two dimensional granular pile constructed at its angle of
repose, the outside wedge will be on the verge of failure. We show how these
predictions can be tested experimentally.Comment: 5 pages, 1 figur
Phase cascade bridge rectifier array in a 2-D lattice
We report on a novel rectification phenomenon in a 2-D lattice network consisting of N×N sites with diode and AC source elements with controllable phases. A phase cascade configuration is described in which the current ripple in a load resistor goes to zero in the large N limit, enhancing the rectification efficiency without requiring any external capacitor or inductor based filters. The integrated modular configuration is qualitatively different from conventional rectenna arrays in which the source, rectifier and filter systems are physically disjoint. Exact analytical results derived using idealized diodes are compared to a realistic simulation of commercially available diodes. Our results on nonlinear networks of source-rectifier arrays are potentially of interest to a fast evolving field of distributed power networks
Analytic Model for Advection-Dominated Accretion Flows in a Global Magnetic Field
A model for advection-dominated accretion flows (ADAFs) in a global magnetic
field is proposed. In contrast to the well known ADAF models in which the
viscosity of a fluid determines both angular momentum transfer and energy
dissipation in the flow, the magnetic field and the electric resistivity,
respectively, control them in this model. A manageable set of analytic
solutions for the flow and the magnetic field is obtained to vertically
non-integrated basic equations. This set describes mathematically a fully
advective accretion flow and, in physically plausible situations for most AGNs,
it is also confirmed that the radiation cooling estimated on this solution is
really negligible compared with the internal energy of the flow.Comment: 27pages, 1 figure, to appear in ApJ vol 529, Feb.1, 200
Quantum black holes from null expansion operators
Using a recently developed quantization of spherically symmetric gravity
coupled to a scalar field, we give a construction of null expansion operators
that allow a definition of general, fully dynamical quantum black holes. These
operators capture the intuitive idea that classical black holes are defined by
the presence of trapped surfaces, that is surfaces from which light cannot
escape outward. They thus provide a mechanism for classifying quantum states of
the system into those that describe quantum black holes and those that do not.
We find that quantum horizons fluctuate, confirming long-held heuristic
expectations. We also give explicit examples of quantum black hole states. The
work sets a framework for addressing the puzzles of black hole physics in a
fully quantized dynamical setting.Comment: 5 pages, version to appear in CQ
PS1-10jh Continues to Follow the Fallback Accretion Rate of a Tidally Disrupted Star
We present late-time observations of the tidal disruption event candidate
PS1-10jh. UV and optical imaging with HST/WFC3 localize the transient to be
coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec,
corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35
rest-frame years after the peak of the nuclear flare, is consistent with a
decline that continues to follow a power-law with no spectral
evolution. Late epochs of optical spectroscopy obtained with MMT ~ 2 and 4
years after the peak, enable a clean subtraction of the host galaxy from the
early spectra, revealing broad helium emission lines on top of a hot continuum,
and placing stringent upper limits on the presence of hydrogen line emission.
We do not measure Balmer H\delta absorption in the host galaxy strong enough to
be indicative of a rare, post-starburst "E+A" galaxy as reported by Arcavi et
al. (2014). The light curve of PS1-10jh over a baseline of 3.5 yr is best
modeled by fallback accretion of a tidally disrupted star. Its strong broad
helium emission relative to hydrogen (He II \lambda 4686/H\alpha > 5) could be
indicative of either the hydrogen-poor chemical composition of the disrupted
star, or certain conditions in the tidal debris of a solar-composition star in
the presence of an optically-thick, extended reprocessing envelope.Comment: Accepted for publication in ApJ Letter
Modelling the black hole silhouette in Sgr A* with ion tori
We calculate the "observed at infinity" image and spectrum of the accretion
structure in Sgr A*, by modelling it as an optically thin, constant angular
momentum ion torus in hydrodynamic equilibrium. The physics we consider
includes a two-temperature plasma, a toroidal magnetic field, as well as
radiative cooling by bremsstrahlung, synchrotron and inverse Compton processes.
Our relativistic model has the virtue of being fully analytic and very simple,
depending only on eight tunable parameters: the black hole spin and the
inclination of the spin axis to our line of sight, the torus angular momentum,
the polytropic index, the magnetic to total pressure ratio, the central values
of density and electron temperature and the ratio of electron to ion
temperatures. The observed image and spectrum are calculated numerically using
the ray-tracing code GYOTO. Our results demonstrate that the ion torus model is
able to account for the main features of the accretion structure surrounding
Sgr A*.Comment: 11 pages, 10 figures, submitted to A &
Collective Particle Flow through Random Media
A simple model for the nonlinear collective transport of interacting
particles in a random medium with strong disorder is introduced and analyzed. A
finite threshold for the driving force divides the behavior into two regimes
characterized by the presence or absence of a steady-state particle current.
Below this threshold, transient motion is found in response to an increase in
the force, while above threshold the flow approaches a steady state with motion
only on a network of channels which is sparse near threshold. Some of the
critical behavior near threshold is analyzed via mean field theory, and
analytic results on the statistics of the moving phase are derived. Many of the
results should apply, at least qualitatively, to the motion of magnetic bubble
arrays and to the driven motion of vortices in thin film superconductors when
the randomness is strong enough to destroy the tendencies to lattice order even
on short length scales. Various history dependent phenomena are also discussed.Comment: 63 preprint pages plus 6 figures. Submitted to Phys Rev
- …
