446 research outputs found
Magnetic Properties of Quantum Ferrimagnetic Spin Chains
Magnetic susceptibilities of spin- ferrimagnetic Heisenberg chains are
numerically investigated. It is argued how the ferromagnetic and
antiferromagnetic features of quantum ferrimagnets are exhibited as functions
of . Spin- ferrimagnetic chains behave like combinations of
spin- ferromagnetic and spin- antiferromagnetic chains provided
.Comment: 4 pages, 7 PS figures, to appear in Phys. Rev. B: Rapid Commu
Combination of Ferromagnetic and Antiferromagnetic Features in Heisenberg Ferrimagnets
We investigate the thermodynamic properties of Heisenberg ferrimagnetic
mixed-spin chains both numerically and analytically with particular emphasis on
the combination of ferromagnetic and antiferromagnetic features. Employing a
new density-matrix renormalization-group technique as well as a quantum Monte
Carlo method, we reveal the overall thermal behavior: At very low temperatures,
the specific heat and the magnetic susceptibility times temperature behave like
and , respectively, whereas at intermediate temperatures,
they exhibit a Schottky-like peak and a minimum, respectively. Developing the
modified spin-wave theory, we complement the numerical findings and give a
precise estimate of the low-temperature behavior.Comment: 9 pages, 9 postscript figures, RevTe
A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems
We use the density matrix renormalization group (DMRG) method to study the
ground and low-lying excited states of three kinds of uniform and dimerized
alternating spin chains. The DMRG procedure is also employed to obtain
low-temperature thermodynamic properties of these systems. We consider a 2N
site system with spins and alternating from site to site and
interacting via a Heisenberg antiferromagnetic exchange. The three systems
studied correspond to being equal to and
; all of them have very similar properties. The ground state is found
to be ferrimagnetic with total spin . We find that there is
a gapless excitation to a state with spin , and a gapped excitation to
a state with spin . Surprisingly, the correlation length in the ground
state is found to be very small for this gapless system. The DMRG analysis
shows that the chain is susceptible to a conditional spin-Peierls instability.
Furthermore, our studies of the magnetization, magnetic susceptibility
and specific heat show strong magnetic-field dependences. The product
shows a minimum as a function of temperature T at low magnetic fields; the
minimum vanishes at high magnetic fields. This low-field behavior is in
agreement with earlier experimental observations. The specific heat shows a
maximum as a function of temperature, and the height of the maximum increases
sharply at high magnetic fields. Although all the three systems show
qualitatively similar behavior, there are some notable quantitative differences
between the systems in which the site spin difference, , is large
and small respectively.Comment: 16 LaTeX pages, 13 postscript figure
Critical Behavior of Anisotropic Heisenberg Mixed-Spin Chains in a Field
We numerically investigate the critical behavior of the spin-(1,1/2)
Heisenberg ferrimagnet with anisotropic exchange coupling in a magnetic field.
A quantized magnetization plateau as a function of the field, appearing at a
third of the saturated magnetization, is stable over whole the
antiferromagnetic coupling region. The plateau vanishes in the ferromagnetic
coupling region via the Kosterlitz-Thouless transition. Comparing the quantum
and classical magnetization curves, we elucidate what are essential quantum
effects.Comment: 5 pages, Revtex, with 7 eps figures, to appear in Phys. Rev. B (An
extra ps figure (fig7.ps) is included for printing.
Multi-plateau magnetization curves of one-dimensional Heisenberg ferrimagnets
Ground-state magnetization curves of ferrimagnetic Heisenberg chains of
alternating spins and are numerically investigated. Calculating several
cases of , we conclude that the spin- chain generally exhibits
magnetization plateaux even at the most symmetric point. In the double- or
more-plateau structure, the initial plateau is generated on a classical basis,
whereas the higher ones are based on a quantum mechanism.Comment: 6 pages, 6 figures embedded, to appear in Phys. Rev. B 01 August 200
Active Membrane Fluctuations Studied by Micropipet Aspiration
We present a detailed analysis of the micropipet experiments recently
reported in J-B. Manneville et al., Phys. Rev. Lett. 82, 4356--4359 (1999),
including a derivation of the expected behaviour of the membrane tension as a
function of the areal strain in the case of an active membrane, i.e.,
containing a nonequilibrium noise source. We give a general expression, which
takes into account the effect of active centers both directly on the membrane,
and on the embedding fluid dynamics, keeping track of the coupling between the
density of active centers and the membrane curvature. The data of the
micropipet experiments are well reproduced by the new expressions. In
particular, we show that a natural choice of the parameters quantifying the
strength of the active noise explains both the large amplitude of the observed
effects and its remarkable insensitivity to the active-center density in the
investigated range. [Submitted to Phys Rev E, 22 March 2001]Comment: 14 pages, 5 encapsulated Postscript figure
Localized-magnon states in strongly frustrated quantum spin lattices
Recent developments concerning localized-magnon eigenstates in strongly
frustrated spin lattices and their effect on the low-temperature physics of
these systems in high magnetic fields are reviewed. After illustrating the
construction and the properties of localized-magnon states we describe the
plateau and the jump in the magnetization process caused by these states.
Considering appropriate lattice deformations fitting to the localized magnons
we discuss a spin-Peierls instability in high magnetic fields related to these
states. Last but not least we consider the degeneracy of the localized-magnon
eigenstates and the related thermodynamics in high magnetic fields. In
particular, we discuss the low-temperature maximum in the isothermal entropy
versus field curve and the resulting enhanced magnetocaloric effect, which
allows efficient magnetic cooling from quite large temperatures down to very
low ones.Comment: 21 pages, 10 figures, invited paper for a special issue of "Low
Temperature Physics " dedicated to the 70-th anniversary of creation of
concept "antiferromagnetism" in physics of magnetis
Elementary Excitations of Heisenberg Ferrimagnetic Spin Chains
We numerically investigate elementary excitations of the Heisenberg
alternating-spin chains with two kinds of spins 1 and 1/2 antiferromagnetically
coupled to each other. Employing a recently developed efficient Monte Carlo
technique as well as an exact diagonalization method, we verify the spin-wave
argument that the model exhibits two distinct excitations from the ground state
which are gapless and gapped. The gapless branch shows a quadratic dispersion
in the small-momentum region, which is of ferromagnetic type. With the
intention of elucidating the physical mechanism of both excitations, we make a
perturbation approach from the decoupled-dimer limit. The gapless branch is
directly related to spin 1's, while the gapped branch originates from
cooperation of the two kinds of spins.Comment: 7 pages, 7 Postscript figures, RevTe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
- …
