783 research outputs found
The VLQ Calorimeter of H1 at HERA: A Highly Compact Device for Measurements of Electrons and Photons under Very Small Scattering Angles
In 1998, the detector H1 at HERA has been equipped with a small backward
spectrometer, the Very Low Q^2 (VLQ) spectrometer comprising a silicon tracker,
a tungsten - scintillator sandwich calorimeter, and a Time-of-Flight system.
The spectrometer was designed to measure electrons scattered under very low
angles, equivalent to very low squared four - momentum transfers Q^2, and high
energy photons with good energy and spatial resolution. The VLQ was in
operation during the 1999 and 2000 run periods. This paper describes the design
and construction of the VLQ calorimeter, a compact device with a fourfold
projective energy read-out, and its performance during test runs and in the
experiment.Comment: 32 pages, 25 figures, 2 tables (To be submitted to Nucl. Instrum.
Meth. A
An evaporation-based model of thermal neutron induced ternary fission of plutonium
Ternary fission probabilities for thermal neutron induced fission of
plutonium are analyzed within the framework of an evaporation-based model where
the complexity of time-varying potentials, associated with the neck collapse,
are included in a simplistic fashion. If the nuclear temperature at scission
and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s,
respectively, then calculated relative probabilities of ternary-fission
light-charged-particle emission follow the trends seen in the experimental
data. The ability of this model to reproduce ternary fission probabilities
spanning seven orders of magnitude for a wide range of light-particle charges
and masses implies that ternary fission is caused by the coupling of an
evaporation-like process with the rapid re-arrangement of the nuclear fluid
following scission.Comment: 25 pages, 12 figures, accepted for publication in IJMP
Yielding and irreversible deformation below the microscale: Surface effects and non-mean-field plastic avalanches
Nanoindentation techniques recently developed to measure the mechanical
response of crystals under external loading conditions reveal new phenomena
upon decreasing sample size below the microscale. At small length scales,
material resistance to irreversible deformation depends on sample morphology.
Here we study the mechanisms of yield and plastic flow in inherently small
crystals under uniaxial compression. Discrete structural rearrangements emerge
as series of abrupt discontinuities in stress-strain curves. We obtain the
theoretical dependence of the yield stress on system size and geometry and
elucidate the statistical properties of plastic deformation at such scales. Our
results show that the absence of dislocation storage leads to crucial effects
on the statistics of plastic events, ultimately affecting the universal scaling
behavior observed at larger scales.Comment: Supporting Videos available at
http://dx.plos.org/10.1371/journal.pone.002041
The damping width of giant dipole resonances of cold and hot nuclei: a macroscopic model
A phenomenological macroscopic model of the Giant Dipole Resonance (GDR)
damping width of cold- and hot-nuclei with ground-state spherical and
near-spherical shapes is developed. The model is based on a generalized Fermi
Liquid model which takes into account the nuclear surface dynamics. The
temperature dependence of the GDR damping width is accounted for in terms of
surface- and volume-components. Parameter-free expressions for the damping
width and the effective deformation are obtained. The model is validated with
GDR measurements of the following nuclides, K, Ca, Sc,
Cu, Sn,Eu, Hg, and Pb, and is
compared with the predictions of other models.Comment: 10 pages, 5 figure
Characterization of Landau-Zener Transitions in Systems with Complex Spectra
This paper is concerned with the study of one-body dissipation effects in
idealized models resembling a nucleus. In particular, we study the quantum
mechanics of a free particle that collides elastically with the slowly moving
walls of a Bunimovich stadium billiard. Our results are twofold. First, we
develop a method to solve in a simple way the quantum mechanical evolution of
planar billiards with moving walls. The formalism is based on the {\it scaling
method} \cite{ver} which enables the resolution of the problem in terms of
quantities defined over the boundary of the billiard. The second result is
related to the quantum aspects of dissipation in systems with complex spectra.
We conclude that in a slowly varying evolution the energy is transferred from
the boundary to the particle through LandauZener transitions.Comment: 24 pages (including 7 postcript figures), Revtex. Submitted to PR
Thermal fission rate around super-normal phase transition
Using Langer's method, we discuss the temperature dependence of
nuclear fission width in the presence of dissipative environments. We introduce
a low cut-off frequency to the spectral density of the environmental
oscillators in order to mimic the pairing gap. It is shown that the decay width
rapidly decreases at the critical temperature, where the phase transition from
super to normal fluids takes place. Relation to the recently observed threshold
for the dissipative fission is discussed.Comment: 12 pages, Latex, Submitted to Physical Review C for publication, 3
Postscript figures are available by request from
[email protected]
Statistical fluctuations for the fission process on its decent from saddle to scission
We reconsider the importance of statistical fluctuations for fission dynamics
beyond the saddle in the light of recent evaluations of transport coefficients
for average motion. The size of these fluctuations are estimated by means of
the Kramers-Ingold solution for the inverted oscillator, which allows for an
inclusion of quantum effects.Comment: 12 pages, Latex, 5 Postscript figures; submitted to PRC e-mail:
[email protected] www home page:
http://www.physik.tu-muenchen.de/tumphy/e/T36/hofmann.htm
Non-linear regression models for Approximate Bayesian Computation
Approximate Bayesian inference on the basis of summary statistics is
well-suited to complex problems for which the likelihood is either
mathematically or computationally intractable. However the methods that use
rejection suffer from the curse of dimensionality when the number of summary
statistics is increased. Here we propose a machine-learning approach to the
estimation of the posterior density by introducing two innovations. The new
method fits a nonlinear conditional heteroscedastic regression of the parameter
on the summary statistics, and then adaptively improves estimation using
importance sampling. The new algorithm is compared to the state-of-the-art
approximate Bayesian methods, and achieves considerable reduction of the
computational burden in two examples of inference in statistical genetics and
in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and
Computin
Semi-Hard Scattering Unraveled from Collective Dynamics by Two-Pion Azimuthal Correlations in 158 A GeV/c Pb + Au Collisions
Elliptic flow and two-particle azimuthal correlations of charged hadrons and
high- pions ( 1 GeV/) have been measured close to mid-rapidity in
158A GeV/ Pb+Au collisions by the CERES experiment. Elliptic flow ()
rises linearly with to a value of about 10% at 2 GeV/. Beyond
1.5 GeV/, the slope decreases considerably, possibly indicating
a saturation of at high . Two-pion azimuthal anisotropies for
1.2 GeV/ exceed the elliptic flow values by about 60% in mid-central
collisions. These non-flow contributions are attributed to near-side and
back-to-back jet-like correlations, the latter exhibiting centrality dependent
broadening.Comment: Submitted to Phys. Rev. Letters, 4 pages, 5 figure
Realistic Expanding Source Model for Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations in Relativistic Heavy-Ion Collisions
We present a realistic expanding source model with nine parameters that are
necessary and sufficient to describe the main physics occuring during
hydrodynamical freezeout of the excited hadronic matter produced in
relativistic heavy-ion collisions. As a first test of the model, we compare it
to data from central Si + Au collisions at p_lab/A = 14.6 GeV/c measured in
experiment E-802 at the AGS. An overall chi-square per degree of freedom of
1.055 is achieved for a fit to 1416 data points involving invariant pi^+, pi^-,
K^+, and K^- one-particle multiplicity distributions and pi^+ and K^+
two-particle correlations. The 99-percent-confidence region of parameter space
is identified, leading to one-dimensional error estimates on the nine fitted
parameters and other calculated physical quantities. Three of the most
important results are the freezeout temperature, longitudinal proper time, and
baryon density along the symmetry axis. For these we find values of 92.9 +/-
4.4 MeV, 8.2 +/- 2.2 fm/c, and 0.0222 + 0.0096 / - 0.0069 fm^-3, respectively.Comment: 37 pages and 12 figures. RevTeX 3.0. Submitted to Physical Review C.
Complete preprint, including device-independent (dvi), PostScript, and LaTeX
versions of the text, plus PostScript files of all figures, are available at
http://t2.lanl.gov/publications/publications.html or at
ftp://t2.lanl.gov/publications/res
- …
