134 research outputs found
Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock
Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvnic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density
Potential roles of Selenium and Zinc in the pathophysiology of crib-biting behavior in horses
Seizure Clusters, Seizure Severity Markers, and SUDEP Risk.
Rationale: Seizure clusters may be related to Sudden Unexpected Death in Epilepsy (SUDEP). Two or more generalized convulsive seizures (GCS) were captured during video electroencephalography in 7/11 (64%) patients with monitored SUDEP in the MORTEMUS study. It follows that seizure clusters may be associated with epilepsy severity and possibly with SUDEP risk. We aimed to determine if electroclinical seizure features worsen from seizure to seizure within a cluster and possible associations between GCS clusters, markers of seizure severity, and SUDEP risk. Methods: Patients were consecutive, prospectively consented participants with drug-resistant epilepsy from a multi-center study. Seizure clusters were defined as two or more GCS in a 24-h period during the recording of prolonged video-electroencephalography in the Epilepsy monitoring unit (EMU). We measured heart rate variability (HRV), pulse oximetry, plethysmography, postictal generalized electroencephalographic suppression (PGES), and electroencephalography (EEG) recovery duration. A linear mixed effects model was used to study the difference between the first and subsequent seizures, with a level of significance set at p < 0.05. Results: We identified 112 GCS clusters in 105 patients with 285 seizures. GCS lasted on average 48.7 ± 19 s (mean 49, range 2-137). PGES emerged in 184 (64.6%) seizures and postconvulsive central apnea (PCCA) was present in 38 (13.3%) seizures. Changes in seizure features from seizure to seizure such as seizure and convulsive phase durations appeared random. In grouped analysis, some seizure features underwent significant deterioration, whereas others improved. Clonic phase and postconvulsive central apnea (PCCA) were significantly shorter in the fourth seizure compared to the first. By contrast, duration of decerebrate posturing and ictal central apnea were longer. Four SUDEP cases in the cluster cohort were reported on follow-up. Conclusion: Seizure clusters show variable changes from seizure to seizure. Although clusters may reflect epilepsy severity, they alone may be unrelated to SUDEP risk. We suggest a stochastic nature to SUDEP occurrence, where seizure clusters may be more likely to contribute to SUDEP if an underlying progressive tendency toward SUDEP has matured toward a critical SUDEP threshold
Association of Peri-ictal Brainstem Posturing With Seizure Severity and Breathing Compromise in Patients With Generalized Convulsive Seizures
OBJECTIVE: To analyze the association between peri-ictal brainstem posturing semiologies with postictal generalized electroencephalographic suppression (PGES) and breathing dysfunction in generalized convulsive seizures (GCS). METHODS: In this prospective, multicenter analysis of GCS, ictal brainstem semiology was classified as (1) decerebration (bilateral symmetric tonic arm extension), (2) decortication (bilateral symmetric tonic arm flexion only), (3) hemi-decerebration (unilateral tonic arm extension with contralateral flexion) and (4) absence of ictal tonic phase. Postictal posturing was also assessed. Respiration was monitored with thoracoabdominal belts, video, and pulse oximetry. RESULTS: Two hundred ninety-five seizures (180 patients) were analyzed. Ictal decerebration was observed in 122 of 295 (41.4%), decortication in 47 of 295 (15.9%), and hemi-decerebration in 28 of 295 (9.5%) seizures. Tonic phase was absent in 98 of 295 (33.2%) seizures. Postictal posturing occurred in 18 of 295 (6.1%) seizures. PGES risk increased with ictal decerebration (odds ratio [OR] 14.79, 95% confidence interval [CI] 6.18-35.39, p < 0.001), decortication (OR 11.26, 95% CI 2.96-42.93, p < 0.001), or hemi-decerebration (OR 48.56, 95% CI 6.07-388.78, p < 0.001). Ictal decerebration was associated with longer PGES (p = 0.011). Postictal posturing was associated with postconvulsive central apnea (PCCA) (p = 0.004), longer hypoxemia (p < 0.001), and Spo2 recovery (p = 0.035). CONCLUSIONS: Ictal brainstem semiology is associated with increased PGES risk. Ictal decerebration is associated with longer PGES. Postictal posturing is associated with a 6-fold increased risk of PCCA, longer hypoxemia, and Spo2 recovery. Peri-ictal brainstem posturing may be a surrogate biomarker for GCS severity identifiable without in-hospital monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that peri-ictal brainstem posturing is associated with the GCS with more prolonged PGES and more severe breathing dysfunction
In Situ Observations of a Magnetosheath High-Speed Jet Triggering Magnetopause Reconnection
Magnetosheath high‐speed jets—localized dynamic pressure enhancements typically of ∼1 Earth radius in size—impact the dayside magnetopause several times per hour. Here we present the first in situ measurements suggesting that such an impact triggered magnetopause reconnection. We use observations from the five Time History of Events and Macroscale Interactions during Substorms spacecraft in a string‐of‐pearls configuration on 7 August 2007. The spacecraft recorded magnetopause in‐and‐out motion during an impact of a magnetosheath jet (VN∼−300 km/s along the magnetopause normal direction). There was no evidence for reconnection for the preimpact crossing, yet three probes observed reconnection after the impact. We infer that the jet impact compressed the originally thick (60–70 di), high magnetic shear (140–160° magnetopause until it was thin enough for reconnection to occur. Magnetosheath high‐speed jets could therefore act as a driver for bursty dayside reconnection
Wind anisotropies and GRB progenitors
We study the effect of wind anisotropies on the stellar evolution leading to
collapsars. Rotating models of a 60 M star with on the ZAMS, accounting for shellular rotation and a magnetic
field, with and without wind anisotropies, are computed at =0.002 until the
end of the core He-burning phase. Only the models accounting for the effects of
the wind anisotropies retain enough angular momentum in their core to produce a
Gamma Ray Burst (GRB). The chemical composition is such that a type Ic
supernova event occurs. Wind anisotropies appear to be a key physical
ingredient in the scenario leading to long GRBs.Comment: 5 pages, 4 figures, accepted for publication in A&A Lette
Multifunctional mitoxantrone-conjugated magnetic nanosystem for targeted therapy of folate receptor-overexpressing malignant cells
Pedicle screw-rod fixation: a feasible treatment for dogs with severe degenerative lumbosacral stenosis
Short-term dynamics of soil carbon, microbial biomass, and soil enzyme activities as compared to longer-term effects of tillage in irrigated row crops
- …
