11,187 research outputs found
Effect of non-magnetic impurities on the magnetic states of anatase TiO
The electronic and magnetic properties of TiO, TiO,
TiON, and TiOF compounds have been studied
by using \emph{ab initio} electronic structure calculations. TiO is found
to evolve from a wide-band-gap semiconductor to a narrow-band-gap semiconductor
to a half-metallic state and finally to a metallic state with oxygen vacancy,
N-doping and F-doping, respectively. Present work clearly shows the robust
magnetic ground state for N- and F-doped TiO. The N-doping gives rise to
magnetic moment of 0.4 at N-site and 0.1 each at
two neighboring O-sites, whereas F-doping creates a magnetic moment of
0.3 at the nearest Ti atom. Here we also discuss the possible
cause of the observed magnetic states in terms of the spatial electronic charge
distribution of Ti, N and F atoms responsible for bond formation.Comment: 11 pages, 4 figures To appear J. Phys.: Condens. Matte
Floquet-engineered quantum state manipulation in a noisy qubit
Adiabatic evolution is a common strategy for manipulating quantum states and
has been employed in diverse fields such as quantum simulation, computation and
annealing. However, adiabatic evolution is inherently slow and therefore
susceptible to decoherence. Existing methods for speeding up adiabatic
evolution require complex many-body operators or are difficult to construct for
multi-level systems. Using the tools of Floquet engineering, we design a scheme
for high-fidelity quantum state manipulation, utilizing only the interactions
available in the original Hamiltonian. We apply this approach to a qubit and
experimentally demonstrate its performance with the electronic spin of a
Nitrogen-vacancy center in diamond. Our Floquet-engineered protocol achieves
state preparation fidelity of , on the same level as the
conventional fast-forward protocol, but is more robust to external noise acting
on the qubit. Floquet engineering provides a powerful platform for
high-fidelity quantum state manipulation in complex and noisy quantum systems
Bianchi Type I Anisotropic Magnetized Cosmological Models with Varying
Bianchi type I magnetized cosmological models in the presence of a bulk viscous fluid are investigated. The source of the magnetic field is due to an electric current produced along x-axis. The distribution consists of an electrically neutral viscous fluid with an infinite electrical conductivity. The coefficient of bulk viscosity is assumed to be a power function of mass density. The cosmological constant is found to be positive and is a decreasing function of time which is supported by results from recent supernovae observations. The behaviour of the models in presence and absence of magnetic field are also discussed
Towards the Formal Reliability Analysis of Oil and Gas Pipelines
It is customary to assess the reliability of underground oil and gas
pipelines in the presence of excessive loading and corrosion effects to ensure
a leak-free transport of hazardous materials. The main idea behind this
reliability analysis is to model the given pipeline system as a Reliability
Block Diagram (RBD) of segments such that the reliability of an individual
pipeline segment can be represented by a random variable. Traditionally,
computer simulation is used to perform this reliability analysis but it
provides approximate results and requires an enormous amount of CPU time for
attaining reasonable estimates. Due to its approximate nature, simulation is
not very suitable for analyzing safety-critical systems like oil and gas
pipelines, where even minor analysis flaws may result in catastrophic
consequences. As an accurate alternative, we propose to use a
higher-order-logic theorem prover (HOL) for the reliability analysis of
pipelines. As a first step towards this idea, this paper provides a
higher-order-logic formalization of reliability and the series RBD using the
HOL theorem prover. For illustration, we present the formal analysis of a
simple pipeline that can be modeled as a series RBD of segments with
exponentially distributed failure times.Comment: 15 page
Universal Level dynamics of Complex Systems
. We study the evolution of the distribution of eigenvalues of a
matrix subject to a random perturbation drawn from (i) a generalized Gaussian
ensemble (ii) a non-Gaussian ensemble with a measure variable under the change
of basis. It turns out that, in the case (i), a redefinition of the parameter
governing the evolution leads to a Fokker-Planck equation similar to the one
obtained when the perturbation is taken from a standard Gaussian ensemble (with
invariant measure). This equivalence can therefore help us to obtain the
correlations for various physically-significant cases modeled by generalized
Gaussian ensembles by using the already known correlations for standard
Gaussian ensembles.
For large -values, our results for both cases (i) and (ii) are similar to
those obtained for Wigner-Dyson gas as well as for the perturbation taken from
a standard Gaussian ensemble. This seems to suggest the independence of
evolution, in thermodynamic limit, from the nature of perturbation involved as
well as the initial conditions and therefore universality of dynamics of the
eigenvalues of complex systems.Comment: 11 Pages, Latex Fil
- …
