10,625 research outputs found
Sets avoided by Brownian motion
Any fixed cylinder is hit almost surely by a 3-dimensional Brownian motion,
but is there a random cylinder that is in the complement? We answer this for
cylinders, and then replacing a cylinder with a more general set
Entanglement verification with finite data
Suppose an experimentalist wishes to verify that his apparatus produces
entangled quantum states. A finite amount of data cannot conclusively
demonstrate entanglement, so drawing conclusions from real-world data requires
statistical reasoning. We propose a reliable method to quantify the weight of
evidence for (or against) entanglement, based on a likelihood ratio test. Our
method is universal in that it can be applied to any sort of measurements. We
demonstrate the method by applying it to two simulated experiments on two
qubits. The first measures a single entanglement witness, while the second
performs a tomographically complete measurement.Comment: 4 pages, 3 pretty picture
Quasi integral of motion for axisymmetric potentials
We present an estimate of the third integral of motion for axisymmetric
three-dimensional potentials. This estimate is based on a Staeckel
approximation and is explicitly written as a function of the potential. We
tested this scheme for the Besancon Galactic model and two other disc-halo
models and find that orbits of disc stars have an accurately conserved third
quasi integral.
The accuracy ranges from of 0.1% to 1% for heights varying from z = 0~kpc to
z= 6 kpc and Galactocentric radii R from 5 to 15kpc.
We also tested the usefulness of this quasi integral in analytic distribution
functions of disc stellar populations: we show that the distribution function
remains approximately stationary and that it allows to recover the potential
and forces by applying Jeans equations to its moments.Comment: 9 pages, 9 figures, accepted for publication in Astron. and Astrophy
Subradiance in a Large Cloud of Cold Atoms
Since Dicke's seminal paper on coherence in spontaneous radiation by atomic
ensembles, superradiance has been extensively studied. Subradiance, on the
contrary, has remained elusive, mainly because subradiant states are weakly
coupled to the environment and are very sensitive to nonradiative decoherence
processes.Here we report the experimental observation of subradiance in an
extended and dilute cold-atom sample containing a large number of particles. We
use a far detuned laser to avoid multiple scattering and observe the temporal
decay after a sudden switch-off of the laser beam. After the fast decay of most
of the fluorescence, we detect a very slow decay, with time constants as long
as 100 times the natural lifetime of the excited state of individual atoms.
This subradiant time constant scales linearly with the cooperativity parameter,
corresponding to the on-resonance optical depth of the sample, and is
independent of the laser detuning, as expected from a coupled-dipole model
Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime
Superradiance has been extensively studied in the 1970s and 1980s in the
regime of superfluores-cence, where a large number of atoms are initially
excited. Cooperative scattering in the linear-optics regime, or "single-photon
superradiance" , has been investigated much more recently, and superra-diant
decay has also been predicted, even for a spherical sample of large extent and
low density, where the distance between atoms is much larger than the
wavelength. Here, we demonstrate this effect experimentally by directly
measuring the decay rate of the off-axis fluorescence of a large and dilute
cloud of cold rubidium atoms after the sudden switch-off of a low-intensity
laser driving the atomic transition. We show that, at large detuning, the decay
rate increases with the on-resonance optical depth. In contrast to forward
scattering, the superradiant decay of off-axis fluorescence is suppressed near
resonance due to attenuation and multiple-scattering effects
Recommended from our members
The rise and fall of early oil field technology: The torsion balance gradiometer
Today elementary physics students take for granted such quantities as "big G," the universal gravitational constant. In fact in the late 1700s the value of this quantity was unknown, and the quest to determine it led to some of the earliest geophysical instrumentation. Just after the Revolutionary War in the United States, Cavendish developed the first system to measure the universal gravitational constant, the familiar "big G." Unfortunately, for geologists (at this time still mostly "gentlemen scientists"), this apparatus produced data which were difficult to interpret geologically, and it was far too large and cumbersome for field use. The geologic limitation was that the system only measured the horizontal derivative of a horizontal component of the gravity field, a quantity which by itself is difficult to interpret. Thus no applications of this elegant yet laboratory-bound instrument emerged
- …
