1,720 research outputs found
Explicit solution of the linearized Einstein equations in TT gauge for all multipoles
We write out the explicit form of the metric for a linearized gravitational
wave in the transverse-traceless gauge for any multipole, thus generalizing the
well-known quadrupole solution of Teukolsky. The solution is derived using the
generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to
appear in Class. Quantum Gra
Approaching the Heisenberg limit with two mode squeezed states
Two mode squeezed states can be used to achieve Heisenberg limit scaling in
interferometry: a phase shift of can be
resolved. The proposed scheme relies on balanced homodyne detection and can be
implemented with current technology. The most important experimental
imperfections are studied and their impact quantified.Comment: 4 pages, 7 figure
Implementation of higher-order absorbing boundary conditions for the Einstein equations
We present an implementation of absorbing boundary conditions for the
Einstein equations based on the recent work of Buchman and Sarbach. In this
paper, we assume that spacetime may be linearized about Minkowski space close
to the outer boundary, which is taken to be a coordinate sphere. We reformulate
the boundary conditions as conditions on the gauge-invariant
Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated
by rewriting the boundary conditions as a system of ODEs for a set of auxiliary
variables intrinsic to the boundary. From these we construct boundary data for
a set of well-posed constraint-preserving boundary conditions for the Einstein
equations in a first-order generalized harmonic formulation. This construction
has direct applications to outer boundary conditions in simulations of isolated
systems (e.g., binary black holes) as well as to the problem of
Cauchy-perturbative matching. As a test problem for our numerical
implementation, we consider linearized multipolar gravitational waves in TT
gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We
demonstrate that the perfectly absorbing boundary condition B_L of order L=l
yields no spurious reflections to linear order in perturbation theory. This is
in contrast to the lower-order absorbing boundary conditions B_L with L<l,
which include the widely used freezing-Psi_0 boundary condition that imposes
the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in
Class. Quantum Grav
Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations
This paper is concerned with the initial-boundary value problem for the
Einstein equations in a first-order generalized harmonic formulation. We impose
boundary conditions that preserve the constraints and control the incoming
gravitational radiation by prescribing data for the incoming fields of the Weyl
tensor. High-frequency perturbations about any given spacetime (including a
shift vector with subluminal normal component) are analyzed using the
Fourier-Laplace technique. We show that the system is boundary-stable. In
addition, we develop a criterion that can be used to detect weak instabilities
with polynomial time dependence, and we show that our system does not suffer
from such instabilities. A numerical robust stability test supports our claim
that the initial-boundary value problem is most likely to be well-posed even if
nonzero initial and source data are included.Comment: 27 pages, 4 figures; more numerical results and references added,
several minor amendments; version accepted for publication in Class. Quantum
Gra
Black Hole--Scalar Field Interactions in Spherical Symmetry
We examine the interactions of a black hole with a massless scalar field
using a coordinate system which extends ingoing Eddington-Finkelstein
coordinates to dynamic spherically symmetric-spacetimes. We avoid problems with
the singularity by excising the region of the black hole interior to the
apparent horizon. We use a second-order finite difference scheme to solve the
equations. The resulting program is stable and convergent and will run forever
without problems. We are able to observe quasi-normal ringing and power-law
tails as well an interesting nonlinear feature.Comment: 16 pages, 26 figures, RevTex, to appear in Phys. Rev.
The discrete energy method in numerical relativity: Towards long-term stability
The energy method can be used to identify well-posed initial boundary value
problems for quasi-linear, symmetric hyperbolic partial differential equations
with maximally dissipative boundary conditions. A similar analysis of the
discrete system can be used to construct stable finite difference equations for
these problems at the linear level. In this paper we apply these techniques to
some test problems commonly used in numerical relativity and observe that while
we obtain convergent schemes, fast growing modes, or ``artificial
instabilities,'' contaminate the solution. We find that these growing modes can
partially arise from the lack of a Leibnitz rule for discrete derivatives and
discuss ways to limit this spurious growth.Comment: 18 pages, 22 figure
Atomic multipole relaxation rates near surfaces
The spontaneous relaxation rates for an atom in free space and close to an
absorbing surface are calculated to various orders of the electromagnetic
multipole expansion. The spontaneous decay rates for dipole, quadrupole and
octupole transitions are calculated in terms of their respective primitive
electric multipole moments and the magnetic relaxation rate is calculated for
the dipole and quadrupole transitions in terms of their respective primitive
magnetic multipole moments. The theory of electromagnetic field quantization in
magnetoelectric materials is used to derive general expressions for the decay
rates in terms of the dyadic Green function. We focus on the decay rates in
free space and near an infinite half space. For the decay of atoms near to an
absorbing dielectric surface we find a hierarchy of scaling laws depending on
the atom-surface distance z.Comment: Updated to journal version. 16 page
Constructing hyperbolic systems in the Ashtekar formulation of general relativity
Hyperbolic formulations of the equations of motion are essential technique
for proving the well-posedness of the Cauchy problem of a system, and are also
helpful for implementing stable long time evolution in numerical applications.
We, here, present three kinds of hyperbolic systems in the Ashtekar formulation
of general relativity for Lorentzian vacuum spacetime. We exhibit several (I)
weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric
hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's
original equations form a weakly hyperbolic system. We discuss how gauge
conditions and reality conditions are constrained during each step toward
constructing a symmetric hyperbolic system.Comment: 15 pages, RevTeX, minor changes in Introduction. published as Int. J.
Mod. Phys. D 9 (2000) 1
Reducing orbital eccentricity in binary black hole simulations
Binary black hole simulations starting from quasi-circular (i.e., zero radial
velocity) initial data have orbits with small but non-zero orbital
eccentricities. In this paper the quasi-equilibrium initial-data method is
extended to allow non-zero radial velocities to be specified in binary black
hole initial data. New low-eccentricity initial data are obtained by adjusting
the orbital frequency and radial velocities to minimize the orbital
eccentricity, and the resulting ( orbit) evolutions are compared with
those of quasi-circular initial data. Evolutions of the quasi-circular data
clearly show eccentric orbits, with eccentricity that decays over time. The
precise decay rate depends on the definition of eccentricity; if defined in
terms of variations in the orbital frequency, the decay rate agrees well with
the prediction of Peters (1964). The gravitational waveforms, which contain
cycles in the dominant l=m=2 mode, are largely unaffected by the
eccentricity of the quasi-circular initial data. The overlap between the
dominant mode in the quasi-circular evolution and the same mode in the
low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the
"New Frontiers" special issue of CQ
- …
