2,140 research outputs found
Reconstruction of Rb-Rb inter-atomic potential from ultracold Bose-gas collision
Scattering phase shifts obtained from 87Rb Bose-gas collision experiments are
used to reconstruct effective potentials resulting, self-consistently, in the
same scattering events observed in the experiments at a particular energy. We
have found that the interaction strength close to the origin suddenly changes
from repulsion to attraction when the collision energy crosses, from below, the
l=2 shape resonance position at E = 275 mikroK. This observation may be
utilized in outlining future Bose-gas collision experiments.Comment: 4 pages, 4 figure
Collective Modes of Tri-Nuclear Molecules
A geometrical model for tri-nuclear molecules is presented. An analytical
solution is obtained provided the nuclei, which are taken to be prolately
deformed, are connected in line to each other. Furthermore, the tri-nuclear
molecule is composed of two heavy and one light cluster, the later sandwiched
between the two heavy clusters. A basis is constructed in which Hamiltonians of
more general configurations can be diagonalized. In the calculation of the
interaction between the clusters higher multipole deformations are taken into
account, including the hexadecupole one. A repulsive nuclear core is introduced
in the potential in order to insure a quasi-stable configuration of the system.
The model is applied to three nuclear molecules, namely Sr + Be +
Ba, Mo + Be + Te and Ru + Be +
Sn.Comment: 24 pages, 9 figure
Clusterization in the shape isomers of the 56Ni nucleus
The interrelation of the quadrupole deformation and clusterization is investigated in the example of the 56Ni nucleus. The shape isomers, including superdeformed and hyperdeformed states, are obtained as stability regions of the quasidynamical U(3) symmetry based on a Nilsson calculation. Their possible binary clusterizations are investigated by considering both the consequences of the Pauli exclusion principle and the energetic preference
Shock waves in strongly coupled plasmas
Shock waves are supersonic disturbances propagating in a fluid and giving
rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can
be well described within the hydrodynamic approximation. On the other hand,
strong shocks are discontinuous within hydrodynamics and therefore probe the
microscopics of the theory. In this paper we consider the case of the strongly
coupled N=4 plasma whose microscopic description, applicable for scales smaller
than the inverse temperature, is given in terms of gravity in an asymptotically
space. In the gravity approximation, weak and strong shocks should be
described by smooth metrics with no discontinuities. For weak shocks we find
the dual metric in a derivative expansion and for strong shocks we use
linearized gravity to find the exponential tail that determines the width of
the shock. In particular we find that, when the velocity of the fluid relative
to the shock approaches the speed of light the penetration depth
scales as . We compare the results with second
order hydrodynamics and the Israel-Stewart approximation. Although they all
agree in the hydrodynamic regime of weak shocks, we show that there is not even
qualitative agreement for strong shocks. For the gravity side, the existence of
shock waves implies that there are disturbances of constant shape propagating
on the horizon of the dual black holes.Comment: 47 pages, 8 figures; v2:typos corrected, references adde
A Precision Measurement of pp Elastic Scattering Cross Sections at Intermediate Energies
We have measured differential cross sections for \pp elastic scattering with
internal fiber targets in the recirculating beam of the proton synchrotron
COSY. Measurements were made continuously during acceleration for projectile
kinetic energies between 0.23 and 2.59 GeV in the angular range deg. Details of the apparatus and the data analysis are
given and the resulting excitation functions and angular distributions
presented. The precision of each data point is typically better than 4%, and a
relative normalization uncertainty of only 2.5% within an excitation function
has been reached. The impact on phase shift analysis as well as upper bounds on
possible resonant contributions in lower partial waves are discussed.Comment: 23 pages 29 figure
Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front
Since its birth, the laser has been extraordinarily effective in the study
and applications of laser-matter interaction at the atomic and molecular level
and in the nonlinear optics of the bound electron. In its early life, the laser
was associated with the physics of electron volts and of the chemical bond.
Over the past fifteen years, however, we have seen a surge in our ability to
produce high intensities, five to six orders of magnitude higher than was
possible before. At these intensities, particles, electrons and protons,
acquire kinetic energy in the mega-electron-volt range through interaction with
intense laser fields. This opens a new age for the laser, the age of nonlinear
relativistic optics coupling even with nuclear physics. We suggest a path to
reach an extremely high-intensity level W/cm in the coming
decade, much beyond the current and near future intensity regime W/cm, taking advantage of the megajoule laser facilities. Such a laser at
extreme high intensity could accelerate particles to frontiers of high energy,
tera-electron-volt and peta-electron-volt, and would become a tool of
fundamental physics encompassing particle physics, gravitational physics,
nonlinear field theory, ultrahigh-pressure physics, astrophysics, and
cosmology. We focus our attention on high-energy applications in particular and
the possibility of merged reinforcement of high-energy physics and ultraintense
laser.Comment: 25 pages. 1 figur
Study of intermediate velocity products in the Ar+Ni collisions between 52 and 95 A.MeV
Intermediate velocity products in Ar+Ni collisions from 52 to 95 A.MeV are
studied in an experiment performed at the GANIL facility with the 4
multidetector INDRA. It is shown that these emissions cannot be explained by
statistical decays of the quasi-projectile and the quasi-target in complete
equilibrium. Three methods are used to isolate and characterize intermediate
velocity products. The total mass of these products increases with the violence
of the collision and reaches a large fraction of the system mass in mid-central
collisions. This mass is found independent of the incident energy, but strongly
dependent on the geometry of the collision. Finally it is shown that the
kinematical characteristics of intermediate velocity products are weakly
dependent on the experimental impact parameter, but strongly dependent on the
incident energy. The observed trends are consistent with a
participant-spectator like scenario or with neck emissions and/or break-up.Comment: 37 pages, 13 figure
Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions
Conditions under which compression occurs and collective expansion develops
in energetic reactions of heavy nuclei, are analyzed, together with their
effects on emitted light baryons and pions. Within transport simulations, it is
shown that shock fronts perpendicular to beam axis form in head-on reactions.
The fronts separate hot compressed matter from normal. As impact parameter
increases, the angle of inclination of the fronts relative to beam axis
decreases, and in-between the fronts a weak tangential discontinuity develops.
Hot matter exposed to the vacuum in directions perpendicular to shock motion
(and parallel to fronts), starts to expand sideways, early within reactions.
Expansion in the direction of shock motion follows after the shocks propagate
through nuclei, but due to the delay does not acquire same strength. Expansion
affects angular distributions, mean-energy components, shapes of spectra and
mean energies of different particles emitted into any one direction, and
further particle yields. Both the expansion and a collective motion associated
with the weak discontinuity, affect the magnitude of sideward flow within
reaction plane. Differences in mean particle energy components in and out of
the reaction plane in semicentral collisions, depend sensitively on the
relative magnitude of shock speed in normal matter and speed of sound in hot
matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94
Characterization of cerebral microangiopathy using 3 Tesla MRI: Correlation with neurological impairment and vascular risk factors
To investigate whether clinical and neuropsychological impairment in cerebral small-vessel disease (CSVD) can be evaluated by means of morphological magnetic resonance imaging (MRI). Materials and Methods MRI at 3 Tesla in T2- and T1-weighted sequences was evaluated in 44 patients with cerebral microangiopathy, and 30 patients with combined cerebral micro- and macroangiopathy. The MR characteristics were correlated to clinical data, attentional impairment, and the patients' individual vascular risk factor profiles. Fifteen healthy age-matched control subjects participated in the study to assess MR signal changes in nonhypertensive elderly subjects. Results Patients and normal controls differed significantly in the extent of MR signal changes. A close relation between age, obesity, hypertension, and MR signal abnormalities was evident in all patients. Patients with pure CSVD additionally showed an association between their MR-defined severity of disease and their degree of neurological impairment, and their vascular risk score. In contrast, attentional impairment did not relate to the MR-defined severity of CSVD. Conclusion MR signal changes in CSVD show a close relationship to some risk factors of individual patients. J. Magn. Reson
- …
