3,890 research outputs found
Experience of Crisis-Hit Asian Countries: Do Asset Management Companies Increase Moral Hazard?
This paper attempts to examine the performances of Asian AMCs. Our analysis reveals that the AMCs vary significantly in their design and performances. We claim that AMCs can trigger moral hazard-inspired bank lending, especially when the mode of NPL transfer from banks to AMC entails little cost to banks. Empirical examination of Thai experience of AMCs reveals that the moral hazardinspired bank lending resulted in creating more new NPLs in the case of public AMCs. On the other hand, the new centralized AMC, the Thai Asset Management Company (TAMC) decreases the new NPL ratio, suggesting that TAMC provokes no adverse moral hazard effect on financial institutions. In addition, we find that the same institutional consideration significantly decreases new NPL in foreign banks and finance companies. The former because they are generally considered better managed, and the latter because they are the institutions that survived the Asian crisis, and hence the more viable and presumably better run finance companies
Identification and characterization of an inhibitory fibroblast growth factor receptor 2 (FGFR2) molecule, up-regulated in an Apert Syndrome mouse model
AS (Apert syndrome) is a congenital disease composed of skeletal, visceral and neural abnormalities, caused by dominant-acting mutations in FGFR2 [FGF (fibroblast growth factor) receptor 2]. Multiple FGFR2 splice variants are generated through alternative splicing, including PTC (premature termination codon)-containing transcripts that are normally eliminated via the NMD (nonsense-mediated decay) pathway. We have discovered that a soluble truncated FGFR2 molecule encoded by a PTC-containing transcript is up-regulated and persists in tissues of an AS mouse model. We have termed this IIIa–TM as it arises from aberrant splicing of FGFR2 exon 7 (IIIa) into exon 10 [TM (transmembrane domain)]. IIIa–TM is glycosylated and can modulate the binding of FGF1 to FGFR2 molecules in BIAcore-binding assays. We also show that IIIa–TM can negatively regulate FGF signalling in vitro and in vivo. AS phenotypes are thought to result from gain-of-FGFR2 signalling, but our findings suggest that IIIa–TM can contribute to these through a loss-of-FGFR2 function mechanism. Moreover, our findings raise the interesting possibility that FGFR2 signalling may be a regulator of the NMD pathway
Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?
Planets less massive than about 10 MEarth are expected to have no massive
H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass)
provided they formed beyond the snowline of protoplanetary disks. Due to inward
migration, such planets could be found at any distance between their formation
site and the star. If migration stops within the habitable zone, this will
produce a new kind of planets, called Ocean-Planets. Ocean-planets typically
consist in a silicate core, surrounded by a thick ice mantle, itself covered by
a 100 km deep ocean. The existence of ocean-planets raises important
astrobiological questions: Can life originate on such body, in the absence of
continent and ocean-silicate interfaces? What would be the nature of the
atmosphere and the geochemical cycles ?
In this work, we address the fate of Hot Ocean-Planets produced when
migration ends at a closer distance. In this case the liquid/gas interface can
disappear, and the hot H2O envelope is made of a supercritical fluid. Although
we do not expect these bodies to harbor life, their detection and
identification as water-rich planets would give us insight as to the abundance
of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae
We report high-resolution 1.6 \micron polarized intensity () images of
the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of
22 AU () up to 554 AU (3.85), which have been obtained by the
high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed
complicated and asymmetrical structures in the inner part (140 AU) of
the disk, while confirming the previously reported outer ( 200 AU)
spiral structure. We have imaged a double ring structure at 40 and
100 AU and a ring-like gap between the two. We found a significant
discrepancy of inclination angles between two rings, which may indicate that
the disk of AB Aur is warped. Furthermore, we found seven dips (the typical
size is 45 AU or less) within two rings as well as three prominent
peaks at 40 AU. The observed structures, including a bumpy double ring, a
ring-like gap, and a warped disk in the innermost regions, provide essential
information for understanding the formation mechanism of recently detected
wide-orbit ( 20 AU) planets.Comment: 12 pages, 3 figure
Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15
We present H- and Ks-band imaging data resolving the gap in the transitional
disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp
elliptical contours delimiting the nebulosity on the inside as well as the
outside, consistent with the shape, size, ellipticity, and orientation of
starlight reflected from the far-side disk wall, whereas the near-side wall is
shielded from view by the disk's optically thick bulk. We note that
forward-scattering of starlight on the near-side disk surface could provide an
alternate interpretation of the nebulosity. In either case, this discovery
provides confirmation of the disk geometry that has been proposed to explain
the spectral energy distributions (SED) of such systems, comprising an
optically thick outer disk with an inner truncation radius of ~46 AU enclosing
a largely evacuated gap. Our data show an offset of the nebulosity contours
along the major axis, likely corresponding to a physical pericenter offset of
the disk gap. This reinforces the leading theory that dynamical clearing by at
least one orbiting body is the cause of the gap. Based on evolutionary models,
our high-contrast imagery imposes an upper limit of 21 Jupiter masses on
companions at separations outside of 0.1" and of 13 Jupiter masses outside of
0.2". Thus, we find that a planetary system around LkCa 15 is the most likely
explanation for the disk architecture.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letters. Minor
change to Figure
SEEDS direct imaging of the RV-detected companion to V450 Andromedae, and characterization of the system
We report the direct imaging detection of a low-mass companion to a young,
moderately active star V450 And, that was previously identified with the radial
velocity method. The companion was found in high-contrast images obtained with
the Subaru Telescope equipped with the HiCIAO camera and AO188 adaptive optics
system. From the public ELODIE and SOPHIE archives we extracted available
high-resolution spectra and radial velocity (RV) measurements, along with RVs
from the Lick planet search program. We combined our multi-epoch astrometry
with these archival, partially unpublished RVs, and found that the companion is
a low-mass star, not a brown dwarf, as previously suggested. We found the
best-fitting dynamical masses to be and
M. We also performed spectral analysis of
the SOPHIE spectra with the iSpec code. The Hipparcos time-series photometry
shows a periodicity of d, which is also seen in SOPHIE spectra as an
RV modulation of the star A. We interpret it as being caused by spots on the
stellar surface, and the star to be rotating with the given period. From the
rotation and level of activity, we found that the system is
Myr old, consistent with an isochrone analysis ( Myr). This
work may serve as a test case for future studies of low-mass stars, brown
dwarfs and exoplanets by combination of RV and direct imaging data.Comment: 15 pages, 9 figures, 7 tables, to appear in Ap
- …
