468 research outputs found
Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate
The process of stimulated Raman adiabatic passage (STIRAP) provides a
possible route for the generation of a coherent molecular Bose-Einstein
condensate (BEC) from an atomic BEC. We analyze this process in a
three-dimensional mean-field theory, including atom-atom interactions and
non-resonant intermediate levels. We find that the process is feasible, but at
larger Rabi frequencies than anticipated from a crude single-mode lossless
analysis, due to two-photon dephasing caused by the atomic interactions. We
then identify optimal strategies in STIRAP allowing one to maintain high
conversion efficiencies with smaller Rabi frequencies and under experimentally
less demanding conditions.Comment: Final published versio
Superchemistry: dynamics of coupled atomic and molecular Bose-Einstein condensates
We analyze the dynamics of a dilute, trapped Bose-condensed atomic gas
coupled to a diatomic molecular Bose gas by coherent Raman transitions. This
system is shown to result in a new type of `superchemistry', in which giant
collective oscillations between the atomic and molecular gas can occur. The
phenomenon is caused by stimulated emission of bosonic atoms or molecules into
their condensate phases
Observation of Superfluid Flow in a Bose-Einstein Condensed Gas
We have studied the hydrodynamic flow in a Bose-Einstein condensate stirred
by a macroscopic object, a blue detuned laser beam, using nondestructive {\em
in situ} phase contrast imaging. A critical velocity for the onset of a
pressure gradient has been observed, and shown to be density dependent. The
technique has been compared to a calorimetric method used previously to measure
the heating induced by the motion of the laser beam.Comment: 4 pages, 5 figure
Realization of Bose-Einstein condensates in lower dimensions
Bose-Einstein condensates of sodium atoms have been prepared in optical and
magnetic traps in which the energy-level spacing in one or two dimensions
exceeds the interaction energy between atoms, realizing condensates of lower
dimensionality. The cross-over into two-dimensional and one-dimensional
condensates was observed by a change in aspect ratio and saturation of the
release energy when the number of trapped atoms was reduced
Uncommon genetic syndromes and narrative production - Case Studies with Williams, Smith-Magenis and Prader- Willi Syndromes
This study compares narrative production among three syndromes with
genetic microdeletions: Williams syndrome (WS), Smith-Magenis syndrome
(SMS), and Prader-Willi syndrome (PWS), characterized by intellectual
disabilities and relatively spared language abilities. Our objective is to study
the quality of narrative production in the context of a common intellectual
disability. To elicit a narrative production, the task Frog! Where Are You was
used. Then, structure, process, and content of the narrative process were
analysed in the three genetic disorders:WS (n52), SMS (n52), and PWS (n52).
Data show evidence of an overall low narrative quality in these syndromes,
despite a high variability within different measures of narrative production.
Results support the hypothesis that narrative is a highly complex cognitive
process and that, in a context of intellectual disability, there is no evidence of
particular ‘hypernarrativity’ in these syndromes.This research was supported by the grants FEDER –
Thermodynamics of an interacting trapped Bose-Einstein gas in the classical field approximation
We present a convenient technique describing the condensate in dynamical
equilibrium with the thermal cloud, at temperatures close to the critical one.
We show that the whole isolated system may be viewed as a single classical
field undergoing nonlinear dynamics leading to a steady state. In our procedure
it is the observation process and the finite detection time that allow for
splitting the system into the condensate and the thermal cloud.Comment: 4 pages, 4 eps figures, final versio
Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile
<p>Background: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression.</p>
<p>Methods: Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3).</p>
<p>Results: Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies.</p>
<p>Conclusions: We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.</p>
Quantum dynamics in ultra-cold atomic physics
We review recent developments in the theory of quantum dynamics in ultra-cold
atomic physics, including exact techniques, but focusing on methods based on
phase-space mappings that are appli- cable when the complexity becomes
exponentially large. These phase-space representations include the truncated
Wigner, positive-P and general Gaussian operator representations which can
treat both bosons and fermions. These phase-space methods include both
traditional approaches using a phase-space of classical dimension, and more
recent methods that use a non-classical phase-space of increased
dimensionality. Examples used include quantum EPR entanglement of a four-mode
BEC, time-reversal tests of dephasing in single-mode traps, BEC quantum
collisions with up to 106 modes and 105 interacting particles, quantum
interferometry in a multi-mode trap with nonlinear absorp- tion, and the theory
of quantum entropy in phase-space. We also treat the approach of variational
optimization of the sampling error, giving an elementary example of a nonlinear
oscillator
Gain control network conditions in early sensory coding
Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity
of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate
models and Hodgkin-Huxley conductance based models
Dynamical response of a Bose-Einstein condensate to a discontinuous change in internal state
A two-photon transition is used to convert an arbitrary fraction of the 87Rb
atoms in a |F=1,m_f=-1> condensate to the |F=2,m_f=1> state. Transferring the
entire population imposes a discontinuous change on the condensate's mean-field
repulsion, which leaves a residual ringing in the condensate width. A
calculation based on Gross-Pitaevskii theory agrees well with the observed
behavior, and from the comparison we obtain the ratio of the intraspecies
scattering lengths for the two states, a_|1,-1> / a_|2,1> = 1.062(12).Comment: 4 pages, 3 figure
- …
