10 research outputs found
Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
Evolution by Adapting Surrogates
To deal with complex optimization problems plagued with computationally expensive fitness functions, the use of surrogates to replace the original functions within the evolutionary framework is becoming a common practice. However, the appropriate datacentric approximation methodology to use for the construction of surrogate model would depend largely on the nature of the problem of interest, which varies from fitness landscape and state of the evolutionary search, to the characteristics of search algorithm used. This has given rise to the plethora of surrogate-assisted evolutionary frameworks proposed in the literature with ad hoc approximation/surrogate modeling methodologies considered. Since prior knowledge on the suitability of the data centric approximation methodology to use in surrogate-assisted evolutionary optimization is typically unavailable beforehand, this paper presents a novel evolutionary framework with the evolvability learning of surrogates (EvoLS) operating on multiple diverse approximation methodologies in the search. Further, in contrast to the common use of fitness prediction error as a criterion for the selection of surrogates, the concept of evolvability to indicate the productivity or suitability of an approximation methodology that brings about fitness improvement in the evolutionary search is introduced as the basis for adaptation. The backbone of the proposed EvoLS is a statistical learning scheme to determine the evolvability of each approximation methodology while the search progresses online. For each individual solution, the most productive approximation methodology is inferred, that is, the method with highest evolvability measure. Fitness improving surrogates are subsequently constructed for use within a trust-region enabled local search strategy, leading to the self-configuration of a surrogate-assisted memetic algorithm for solving computationally expensive problems. A numerical study of EvoLS on commonly used benchmark problems and a real-world computationally expensive aerodynamic car rear design problem highlights the efficacy of the proposed EvoLS in attaining reliable, high quality, and efficient performance under a limited computational budget.Published versio
AN ANALYSIS OF INCOME INEQUALITY, SOCIAL SECURITY AND COMPETITIVENESS: AN ESSAY ON DR GOH KENG SWEE'S CONTRIBUTIONS TO SINGAPORE'S ECONOMIC STRATEGY
A Proposition on Memes and Meta-memes in Computing for Higher-order Learning
In computational intelligence, the term \u27memetic algorithm\u27 has come to be associated with the algorithmic pairing of a global search method with a local search method. In a sociological context, a \u27meme\u27 has been loosely defined as a unit of cultural information, the social analog of genes for individuals. Both of these definitions are inadequate, as \u27memetic algorithm\u27 is too specific, and ultimately a misnomer, as much as a \u27meme\u27 is defined too generally to be of scientific use. In this paper, we extend the notion of memes from a computational viewpoint and explore the purpose, definitions, design guidelines and architecture for effective memetic computing. Utilizing two conceptual case studies, we illustrate the power of high-order meme-based learning. with applications ranging from cognitive science to machine learning, memetic computing has the potential to provide much-needed stimulation to the field of computational intelligence by providing a framework for higher order learning
Memes as building blocks: a case study on evolutionary optimization + transfer learning for routing problems
Memetic Algorithms for Business Analytics and Data Science: A Brief Survey
This chapter reviews applications of Memetic Algorithms in the areas of business analytics and data science. This approach originates from the need to address optimization problems that involve combinatorial search processes. Some of these problems were from the area of operations research, management science, artificial intelligence and machine learning. The methodology has developed considerably since its beginnings and now is being applied to a large number of problem domains. This work gives a historical timeline of events to explain the current developments and, as a survey, gives emphasis to the large number of applications in business and consumer analytics that were published between January 2014 and May 2018
Critical care usage after major gastrointestinal and liver surgery: a prospective, multicentre observational study
Background:
Patient selection for critical care admission must balance patient safety with optimal resource allocation. This study aimed to determine the relationship between critical care admission, and postoperative mortality after abdominal surgery.
Methods:
This prespecified secondary analysis of a multicentre, prospective, observational study included consecutive patients enrolled in the DISCOVER study from UK and Republic of Ireland undergoing major gastrointestinal and liver surgery between October and December 2014. The primary outcome was 30-day mortality. Multivariate logistic regression was used to explore associations between critical care admission (planned and unplanned) and mortality, and inter-centre variation in critical care admission after emergency laparotomy.
Results:
Of 4529 patients included, 37.8% (n=1713) underwent planned critical care admissions from theatre. Some 3.1% (n=86/2816) admitted to ward-level care subsequently underwent unplanned critical care admission. Overall 30-day mortality was 2.9% (n=133/4519), and the risk-adjusted association between 30-day mortality and critical care admission was higher in unplanned [odds ratio (OR): 8.65, 95% confidence interval (CI): 3.51–19.97) than planned admissions (OR: 2.32, 95% CI: 1.43–3.85). Some 26.7% of patients (n=1210/4529) underwent emergency laparotomies. After adjustment, 49.3% (95% CI: 46.8–51.9%, P<0.001) were predicted to have planned critical care admissions, with 7% (n=10/145) of centres outside the 95% CI.
Conclusions:
After risk adjustment, no 30-day survival benefit was identified for either planned or unplanned postoperative admissions to critical care within this cohort. This likely represents appropriate admission of the highest-risk patients. Planned admissions in selected, intermediate-risk patients may present a strategy to mitigate the risk of unplanned admission. Substantial inter-centre variation exists in planned critical care admissions after emergency laparotomies
Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study
We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or >= 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
