7,521 research outputs found
On Rees algebras and invariants for singularities over perfect fields
The purpose of this paper is to show how Rees algebras can be applied in the
study of singularities embedded in smooth schemes over perfect fields. In
particular, we will study situations in which the multiplicity of a
hypersurface is a multiple of the characteristic. As another application, here
we indicate how the use of these algebras has trivialized local-global
questions in resolution of singularities over fields of characteristic zero.Comment: Revised version. To appear in Indiana Math.
Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories
Indexación: Web of ScienceBackground: Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria.
Results: In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles.
Conclusions: Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.http://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0477-
Recommended from our members
Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex.
Glucocorticoid hormones regulate the post-translational maturation and sorting of cell surface and extracellular mouse mammary tumor virus (MMTV) glycoproteins in M1.54 cells, a stably infected rat hepatoma cell line. Exposure to monensin significantly reduced the proteolytic maturation and externalization of viral glycoproteins resulting in a stable cellular accumulation of a single 70,000-Mr glycosylated polyprotein (designated gp70). Cell surface- and intracellular-specific immunoprecipitations of monensin-treated cells revealed that gp70 can be localized to the cell surface only in the presence of 1 microM dexamethasone, while in uninduced cells gp70 is irreversibly sequestered in an intracellular compartment. Analysis of oligosaccharide processing kinetics demonstrated that gp70 acquired resistance to endoglycosidase H with a half-time of 65 min in the presence or absence of hormone. In contrast, gp70 was inefficiently galactosylated after a 60-min lag in uninduced cells while rapidly acquiring this carbohydrate modification in the presence of dexamethasone. Furthermore, in the absence or presence of monensin, MMTV glycoproteins failed to be galactosylated in hormone-induced CR4 cells, a complement-selected sorting variant defective in the glucocorticoid-regulated compartmentalization of viral glycoproteins to the cell surface. Since dexamethasone had no apparent global effects on organelle morphology or production of total cell surface-galactosylated species, we conclude that glucocorticoids induce the localization of cell surface MMTV glycoproteins by regulating a highly selective step within the Golgi apparatus after the acquisition of endoglycosidase H-resistant oligosaccharide side chains but before or at the site of galactose attachment
Classical Antiferromagnetism in Kinetically Frustrated Electronic Models
We study the infinite U Hubbard model with one hole doped away half-filling,
in triangular and square lattices with frustrated hoppings that invalidate
Nagaoka's theorem, by means of the density matrix renormalization group. We
find that these kinetically frustrated models have antiferromagnetic ground
states with classical local magnetization in the thermodynamic limit. We
identify the mechanism of this kinetic antiferromagnetism with the release of
the kinetic energy frustration as the hole moves in the established
antiferromagnetic background. This release can occurs in two different ways: by
a non-trivial spin-Berry phase acquired by the hole or by the effective
vanishing of the hopping amplitude along the frustrating loops.Comment: 12 pages and 4 figures, with Supplementary Material. To be published
in Phys. Rev. Let
Type Ia supernovae and the ^{12}C+^{12}C reaction rate
The experimental determination of the cross-section of the ^{12}C+^{12}C
reaction has never been made at astrophysically relevant energies (E<2 MeV).
The profusion of resonances throughout the measured energy range has led to
speculation that there is an unknown resonance at E\sim1.5 MeV possibly as
strong as the one measured for the resonance at 2.14 MeV. We study the
implications that such a resonance would have for the physics of SNIa, paying
special attention to the phases that go from the crossing of the ignition curve
to the dynamical event. We use one-dimensional hydrostatic and hydrodynamic
codes to follow the evolution of accreting white dwarfs until they grow close
to the Chandrasekhar mass and explode as SNIa. In our simulations, we account
for a low-energy resonance by exploring the parameter space allowed by
experimental data. A change in the ^{12}C+^{12}C rate similar to the one
explored here would have profound consequences for the physical conditions in
the SNIa explosion, namely the central density, neutronization, thermal
profile, mass of the convective core, location of the runaway hot spot, or time
elapsed since crossing the ignition curve. For instance, with the largest
resonance strength we use, the time elapsed since crossing the ignition curve
to the supernova event is shorter by a factor ten than for models using the
standard rate of ^{12}C+^{12}C, and the runaway temperature is reduced from
\sim8.14\times10^{8} K to \sim4.26\times10^{8} K. On the other hand, a
resonance at 1.5 MeV, with a strength ten thousand times smaller than the one
measured at 2.14 MeV, but with an {\alpha}/p yield ratio substantially
different from 1 would have a sizeable impact on the degree of neutronization
of matter during carbon simmering. We conclude that a robust understanding of
the links between SNIa properties and their progenitors will not be attained
until the ^{12}C+^{12}C reaction rate is measured at energies \sim1.5 MeV.Comment: 15 pages, 6 tables, 10 figures, accepted for Astronomy and
Astrophysic
Powering a Biosensor Using Wearable Thermoelectric Technology
Wearable medical devices such as insulin pumps, glucose monitors, hearing aids, and electrocardiograms provide necessary medical aid and monitoring to millions of users worldwide. These battery powered devices require battery replacement and frequent charging that reduces the freedom and peace of mind of users. Additionally, the significant portion of the world without access to electricity is unable to use these medical devices as they have no means to power them constantly. Wearable thermoelectric power generation aims to charge these medical device batteries without a need for grid power.
Our team has developing a wristband prototype that uses body heat, ambient air, and heat sinks to create a temperature difference across thermoelectric modules thus generating ultra-low voltage electrical power. A boost converter is implemented to boost this voltage to the level required by medical device batteries. Our goal was to use this generated power to charge medical device batteries off-the-grid, increasing medical device user freedom and allowing medical device access to those without electricity. We successfully constructed a wearable prototype that generates the voltage required by an electrocardiogram battery; however, further thermoelectric module and heat dissipation optimization is necessary to generate sufficient current to charge the battery
Individual-specific changes in the human gut microbiota after challenge with enterotoxigenic Escherichia coli and subsequent ciprofloxacin treatment
Acknowledgements The authors wish to thank Mark Stares, Richard Rance, and other members of the Wellcome Trust Sanger Institute’s 454 sequencing team for generating the 16S rRNA gene data. Lili Fox Vélez provided editorial support. Funding IA, JNP, and MP were partly supported by the NIH, grants R01-AI-100947 to MP, and R21-GM-107683 to Matthias Chung, subcontract to MP. JNP was partly supported by an NSF graduate fellowship number DGE750616. IA, JNP, BRL, OCS and MP were supported in part by the Bill and Melinda Gates Foundation, award number 42917 to OCS. JP and AWW received core funding support from The Wellcome Trust (grant number 098051). AWW, and the Rowett Institute of Nutrition and Health, University of Aberdeen, receive core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS).Peer reviewedPublisher PD
A Super-Solar Metallicity for the Progenitor of Kepler's Supernova
We have performed deep X-ray observations of the remnant of Kepler's
supernova (SN 1604) as a Key Project of the Suzaku Observatory. Our main goal
is to detect secondary Fe-peak elements in the SN ejecta to gain insights into
the Type Ia supernova explosion mechanism and the nature of the progenitor.
Here we report our initial results. We made a conclusive detection of X-ray
emission lines from highly ionized Mn, Cr, and Ni as well as Fe. The observed
Mn-to-Cr line flux ratio is ~0.60, ~30% larger than that measured in Tycho's
remnant. We estimate a Mn-to-Cr mass ratio of ~0.77, which is strongly
suggestive of a large neutron excess in the progenitor star before the onset of
the thermonuclear runaway. The observed Ni-to-Fe line flux ratio (~0.03)
corresponds to a mass ratio of ~0.06, which is generally consistent with the
products of explosive Si-burning regime in Type Ia explosion models, and rules
out contamination from the products of neutron-rich nuclear statistical
equilibrium in the shocked ejecta. Together with the previously suggested
luminous nature of the explosion, these mass ratios provide strong evidence for
a super-solar metallicity in the SN progenitor (~3 Z_sun). Kepler's supernova
was likely the thermonuclear explosion of a white dwarf formed in the recent
past that must have exploded through a relatively prompt channel.Comment: Total 12 pages including 2 tables and 2 color figures. Accepted by
ApJ
- …
